Now showing 1 - 2 of 2
  • Publication
    Are Drivers Allowed to Sleep?
    ( 2023)
    Schwarze, Doreen
    ;
    ;
    Weiser, Lukas
    ;
    ;
    Verhoeven, Rolf
    ;
    Rötting, Matthias
    Higher levels of automated driving may offer the possibility to sleep in the driver’s seat in the car, and it is foreseeable that drivers will voluntarily or involuntarily fall asleep when they do not need to drive. Post-sleep performance impairments due to sleep inertia, a brief period of impaired cognitive performance after waking up, is a potential safety issue when drivers need to take over and drive manually. The present study assessed whether sleep inertia has an effect on driving and cognitive performance after different sleep durations. A driving simulator study with n = 13 participants was conducted. Driving and cognitive performance were analyzed after waking up from a 10-20 min sleep, a 30-60 min sleep, and after resting without sleep. The study’s results indicate that a short sleep duration does not reliably prevent sleep inertia. After the 10-20 min sleep, cognitive performance upon waking up was decreased, but the sleep inertia impairment faded within 15 min. Although the driving parameters showed no significant difference between the conditions, participants subjectively felt more tired after both sleep durations compared to resting. The small sample size of 13 participants, tested in a within-design, may have prevented medium and small effects from becoming significant. In our study, take-over was offered without time pressure, and take-over times ranged from 3.15 min to 4.09 min after the alarm bell, with a mean value of 3.56 min in both sleeping conditions. The results suggest that daytime naps without previous sleep deprivation result in mild and short-term impairments. Further research is recommended to understand the severity of impairments caused by different intensities of sleep inertia.
  • Publication
    Improving Driver Performance and Experience in Assisted and Automated Driving with Visual Cues in the Steering Wheel
    ( 2022) ;
    Muthumani, Arun
    ;
    Feierle, Alexander
    ;
    Galle, Melanie
    ;
    ; ; ;
    Bengler, Klaus
    In automated driving it is important to ensure drivers’ awareness of the currently active level of automation and to support transitions between those levels. This is possible with a suitable human-machine interface (HMI). In this driving simulator study, two visual HMI concepts (Concept A and B ) were compared with a baseline for informing drivers about three modes: manual driving, assisted driving, and automated driving. The HMIs, consisting of LED strips on the steering wheel that differed in luminance, color, and pattern, provided continuous information about the active mode and announced transitions. The assisted mode was conveyed in Concept A using a combination of amber and blue LEDs, while in Concept B only amber LEDs were used. During automated driving Concept A displayed blue LEDs and Concept B, turquoise. Both concepts were compared to a baseline HMI, with no LEDs. Thirty-eight drivers with driving licence were trained and participated. Objective measures (hands-on-wheel time, takeover time, and visual attention) are reported. Self-reported measures (mode awareness, trust, user experience, and user acceptance) from a previous publication are briefly repeated in this context (Muthumani et al.). Concept A showed 200 ms faster hands-on-wheel times than the baseline, while in Concept B several outliers were observed that prevented significance. The visual HMIs with LEDs did not influence the eyes-on-road time in any of the automation levels. Participants preferred Concept B, with more prominent differentiation between the automation levels, over Concept A.