Now showing 1 - 2 of 2
  • Publication
    Predictive model of tool wear in milling with coated tools integrated into a CAM system
    ( 2013)
    Bouzakis, K.D.
    ;
    Paraskevopoulou, R.
    ;
    Katirtzoglou, G.
    ;
    Makrimallakis, S.
    ;
    Bouzakis, E.
    ;
    Efstathiou, K.
    The coated tool wear evolution in milling at constant cutting conditions can be described analytically based among other factors on the cutting edge entry impact duration. A tool wear predictive mathematical model for milling parts of complicated geometry was created employing this methodology and a commercial CAM system. Parameters of the developed model were determined based on experimental results. In this way, the expected tool wear growth during numerically controlled milling can be estimated, considering the cutting penetrations along the tool paths, the process up or down kinematic and other factors. The application of the introduced model is demonstrated through appropriate examples. (C) 2013 CIRP.
  • Publication
    Effect of tool diameter and cutting edge entry impact duration on coated tool wear in milling of various kinematics
    ( 2012)
    Bouzakis, K.-D.
    ;
    Katirtzoglou, G.
    ;
    Bouzakis, E.
    ;
    Makrimallakis, S.
    ;
    Maliaris, G.
    The die and mold industry registers nowadays a significant growth due to current developments among others in the sectors of energy and aerospace. The manufacturing procedure of dies and molds primarily includes milling operations, which are commonly linked to complicated chip geometry and contact conditions between tool and workpiece. Therefore, the optimisation of the cutting conditions and the description of the tool wear is a great challenge for production engineers. In the described experiments, cement-coated carbide inserts fixed on milling cutters with various diameters were applied in down and up milling for monitoring the wear behaviour at various cutting edge entry conditions. The corresponding developed strain rates cause different film-substrate deformations and resulting loads. These phenomena were investigated with the aid of a new impact tester with adjustable impact force characteristics. The effective tool life up to a certain flank wear land width vers us the cutting edge entry duration was explained and analytically described.