Now showing 1 - 4 of 4
  • Publication
    High-power laser beam welding for thick section steels - new perspectives using electromagnetic systems
    ( 2022)
    Rethmeier, M.
    ;
    Gumenyuk, A.
    ;
    Bachmann, M.
    In recent years, it was shown that the introduction of additional oscillating and permanent magnetic fields to laser beam and laser-arc hybrid welding can bring several beneficial effects. Examples are a contactless weld pool support for metals of high thickness suffering from severe drop-out when being welded conventionally or an enhanced stirring to improve the mixing of added filler material in the depth of the weld pool to guarantee homogeneous resulting mechanical properties of the weld. The latest research results show the applicability to various metal types over a wide range of thicknesses and welding conditions. The observations made were demonstrated in numerous experimental studies and a deep understanding of the interaction of the underlying physical mechanisms was extracted from numerical calculations.
  • Publication
    Shielded metal arc welding of 9%Ni steel using matching ferritic filler metal
    ( 2021)
    El-Batahgy, A.
    ;
    Saiyah, A.
    ;
    Khafagi, S.
    ;
    Gumenyuk, A.
    ;
    Gook, S.
    ;
    Rethmeier, M.
    Motivated by the tensile strength loss of 9%Ni steel arc welded joints made using Ni-based austenitic filler metals, the feasibility of maintaining the tensile strength using matching ferritic filler metal has been demonstrated. In comparison with shielded metal arc welded joint made using Ni-based austenitic electrode ENiCrMo-6, higher tensile strength comparable to that of the base metal was obtained using matching ferritic electrode. Besides, sufficient impact toughness energies with much lower mismatch were obtained for weld metal and heat-affected zone. Welded joint with a lower mechanical mismatching is of considerable importance for achieving acceptable combination of tensile strength and impact toughness. A better combination of these mechanical properties is ensured by applying a post weld heat treatment.
  • Publication
    Experimental and numerical study on the influence of the laser hybrid parameters in partial penetration welding on the solidification cracking in the weld root
    ( 2020)
    Bakir, N.
    ;
    Üstündag, Ö.
    ;
    Gumenyuk, A.
    ;
    Rethmeier, M.
    The aim of the present study is to investigate the influence of the laser hybrid welding parameters on the solidification cracks in the weld root for partial penetration welding. Welding trials were performed on thick-walled high-strength steels of grade S690QL under the same critical restraint intensity, with a variation of the welding velocity, wire feeding rate, and the focal position of the laser beam. It was ascertained that the welding velocity has a high impact on the solidification cracking phenomenon. A decrease in the welding speed leads to a reduction of the number of cracks in the weld root. The arc power has also a slight influence on the solidification cracking, while the change of the focal position of the laser beam shows also a remarkable effect. Besides, numerical simulation was performed to understand the thermomechanical behavior of the welds for different welding parameters to assist the interpretation of the experimental results.
  • Publication
    Laser/GMA hybrid welding of thick-walled precision pipes
    ( 2012)
    Gebhardt, M.O.
    ;
    Gumenyuk, A.
    ;
    Quiroz, V.
    ;
    Rethmeier, M.
    Thick-walled pipes made of steel are the basis of a large number of components in mechanical and installation engineering, e.g. for hydraulic components, in power station technology or in the petroleum industry. Particularly when strict positional and shape tolerances are demanded, the classical manufacturing process is chip-producing machining from the solid material. However, this is time-intensive and material-intensive. The laser/GMA hybrid processes with modern high-power lasers are a suitable alternative. With these processes, it is currently possible to weld components with a wall thickness up to approx. 15 mm with little distortion in one pass. However, in initial experiments, solidification cracks with longitudinal and vertical orientations in relation to the welding direction, so-called central line cracks, were established in welds on pipes. Within the framework of a research project, it was possible to determine the cause of the cracking and to find measures in order to avoid it. The technical boundary conditions could be complied with in this respect. The article gives an overview of the research project and the essential results.