Now showing 1 - 1 of 1
No Thumbnail Available
Publication

Assessing the predictive capability of numerical additive manufacturing simulations via in-situ distortion measurements on a LMD component during build-up

2018 , Biegler, Max , Graf, Benjamin , Rethmeier, Michael

Due to rapid, localized heating and cooling, distortions accumulate in additive manufactured laser metal deposition (LMD) components, leading to a loss of dimensional accuracy or even cracking. Numerical welding simulations allow the prediction of these deviations and their optimization before conducting experiments. To assess the viability of the simulation tool for the use in a predictive manner, comprehensive validations with experimental results on the newly-built part need to be conducted. In this contribution, a predictive, mechanical simulation of a thin-walled, curved LMD geometry is shown for a 30-layer sample of 1.4404 stainless steel. The part distortions are determined experimentally via an in-situ digital image correlation measurement using the GOM Aramis system and compared with the simulation results. With this benchmark, the performance of a numerical welding simulation in additive manufacturing is discussed in terms of result accuracy and usability.