Now showing 1 - 2 of 2
  • Publication
    Identification of Human Dynamics in User-Led Physical Human Robot Environment Interaction
    ( 2018) ;
    Surdilovic, Dragoljub
    Human dynamic models are useful in design of physical human-robot and human-robot-environment interaction: informing choice of robot impedance, motivating relaxations to passivity-based safety constraints, and allowing online inference to user intent. Designing for performance objectives such as stable well-damped contact transitions also requires nominal models, but the use of human models in controller design is limited. Established approaches to identify human dynamics apply position or force perturbation and measure the corresponding response, mostly to validate neuromuscular hypotheses on motor control, which raises questions about their transferability to human-led collaboration. Here, human dynamics are identified in a task which closely resembles the final application, where the human leads the robot into contact with a (virtual) wall. This paper investigates the impact of human dynamics on coupled system behavior, and establishes a general framework for identification in human-led scenarios, making consideration of unmeasured human input. Experiments with different stiffness environments allow inference to human dynamics, and characterize the range of human dynamics which can be modulated by the user.
  • Publication
    Multimodal Environment Dynamics for Interactive Robots
    ( 2018) ;
    Surdilovic, Dragoljub
    Interactive robots offer improved performance in tasks with environmental uncertainty, but accommodating environment input weakens predictions of contact force or position trajectories, making the identification of subtask completion or faults difficult. This paper develops a task monitoring approach for complex assembly tasks that involve transitions between discrete environment dynamic modes. In semi-structured environments, these dynamic modes and their transitions are approximately known a priori, allowing task monitoring through estimation of the current mode and fault detection as a deviation from expected, desired dynamic mode transitions. This allows a more natural description of many interactive tasks, improving robustness to variations in force or position trajectories that impedance control seeks to address. The ability of impedance and admittance controlled robots to identify their environment is investigated, making consideration of joint and end-effector physical compliance. Prior information on environment dynamics and mode transitions allow recursive estimates of dynamic mode suitable for online use, under both full state knowledge and only force/position measurements. Experiments with an admittance controlled robot in a gear assembly task validate the approach.