Now showing 1 - 4 of 4
  • Publication
    Feasibility study of joining of carbon fibre-reinforced polymer composites and aluminium alloys by electron beam welding for use in lightweight construction
    In recent years, new solutions to reduce the weight of components used in the automotive, railway, and aircraft industries have been researched. Carbon Fibre Composites (CFC) have been used to replace metals in products requiring lightweight construction, such as aircraft or high-performance vehicles due to their exceptional mechanical strength. However, the use of CFCs is limited by the reason of their poor thermal conductivity, particularly on components requiring effective dissipation of power losses. To respond to the requirements, the idea of the material combination of metals and polymer-based composites is proposed. In this study, electron beam welding is used for the joining of aluminium alloys and polymer-based composites. Within the experiments, the relevant process parameters such as beam current, welding speed, and heat input have been optimized to achieve the welding of the aluminium alloys. Then, the joining of aluminium alloys and carbon fibre-reinforced polymer composites has been investigated through the optimized welding process parameters for aluminium alloys. Conclusions are drawn regarding the carbon-fibre reinforced polymer composites (PA6-CF) and aluminium alloys (AlMg3) being joinable through electron beams.
  • Publication
    A life cycle assessment of joining processes in the automotive industry, illustrated by the example of an EV battery case
    ( 2023) ; ; ;
    Schmolke, Tobias
    ;
    Spohr, Sebastian
    ;
    Meschut, Gerson
    ;
    Eckstein, Lutz
    ;
    Current ecological, economic and social changes are leading to a change in development, design and production of future vehicles. In this context, it is the stated goal of many manufacturers to advance the development of an environmentally friendly vehicle and climate-neutral production throughout the entire supply chain. This study presents a comparative life cycle assessment of the joining processes laser beam welding, laser brazing and resistance spot welding. For this purpose, an approach tailored to welding processes is presented and applied to the example of a battery case for electric vehicles. For the welding process under consideration, the main influences on the resulting environmental impact categories are evaluated and compared. The requirements for ecologically efficient welding processes are discussed and outlined. The results show that particularly the materials involved, such as the consumption of the filler material, have the greatest environmental impact and thus offer the greatest potential for savings.
  • Publication
    Analysis and recycling of bronze grinding waste to produce maritime components using directed energy deposition
    ( 2021) ;
    Marko, Angelina
    ;
    Kruse, Tobias
    ;
    ;
    Additive manufacturing promises a high potential for the maritime sector. Directed Energy Deposition (DED) in particular offers the opportunity to produce large-volume maritime components like propeller hubs or blades without the need of a costly casting process. The post processing of such components usually generates a large amount of aluminum bronze grinding waste. The aim of the presented project is to develop a sustainable circular AM process chain for maritime components by recycling aluminum bronze grinding waste to be used as raw material to manufacture ship propellers with a laser-powder DED process. In the present paper, grinding waste is investigated using a dynamic image analysis system and compared to commercial DED powder. To be able to compare the material quality and to verify DED process parameters, semi-academic sample geometries are manufactured.
  • Publication
    Automated tool-path generation for rapid manufacturing and numerical simulation of additive manufacturing LMD geometries
    ( 2019) ;
    Wang, Jiahan
    ;
    Graf, Benjamin
    ;
    In additive manufacturing (AM) Laser Metal Deposition (LMD), parts are built by welding layers of powder feedstock onto a substrate. Applications for steel powders include forging tools and structural components for various industries. For large parts, the choice of tool-paths influences the build-rate, the part performance and the distortions in a highly geometry-dependent manner. With weld-path lengths in the range of hundreds of meters, a reliable, automated tool path generation is essential for the usability of LMD processes. In this contribution, automated tool-path generation approaches are shown and their results are discussed for arbitrary geometries. The investigated path strategies are the classical approaches: ""Zig-zag-"" and ""contour-parallel-strategies"". After generation, the tool-paths are automatically formatted into g-code for experimental build-up and ASCII for a numerical simulation model. Finally, the tool paths are discussed in regards to volume-fill, microstructure and porosity for the experimental samples. This work presents a part of the IGF project 18737N ""Welding distortion simulation"" (FOSTA P1140)