Now showing 1 - 4 of 4
  • Publication
    Cooling Capacity of Oil-in-Water Emulsion under wet Machining Conditions
    ( 2023)
    Nabbout, Kaissar
    ;
    Sommerfeld, Martin
    ;
    Barth, Enrico
    ;
    ;
    Bock-Marbach, Benjamin
    ;
    Many industrial machining operations are carried out under wet machining conditions. Modelling and simulating fluid-structure-interactions and conjugate heat transfer are still a challenge nowadays. In this paper, temperature dependent heat transfer coefficients (HTC) h(T) are experimentally estimated for wet machining-like conditions in a jet cooling experiment. The transient temperature is thereby used to solve an Inverse Heat Transfer Problem for HTC function estimation. Determined HTC are applied as input in related jet cooling simulation using the Finite-Pointset-Method (FPM) to validate the modeling approach. Additionally, wet cutting simulations numerically highlight the influence of determined HTC h(T) on turning.
  • Publication
    Heat Transfer Study for Oil-in-Water Emulsion Jets Impinging onto hot Metal Surface
    ( 2022)
    Nabbout, Kaissar
    ;
    Pasternak, Lars
    ;
    Sommerfeld, M.
    ;
    Bock-Marbach, Benjamin
    ;
    ;
    Barth, Enrico
    ;
    The purpose of this work is to analyse numerically as well as experimentally liquid jets impinging at different angles (30°, 60° and 90°) and different velocities (4.7 m/s, 7.0 m/s and 9.7 m/s) onto a hot circular plate made of Inconel 718. Liquids used in the experiments are water and oil-in-water emulsion with 8% concentration of the mineral oil Adrana AY 401 from Houghton Deutschland GmbH. An infrared camera is used to measure the black-coated rear face of the plate during the jet cooling process. The temperature field obtained is then used as input to estimate the heat transfer coefficient. The heat transfer coefficient is estimated by solving an Inverse Heat Transfer Problem (IHTP). In addition, the transient growth of the wetting area is also shown for both liquids. The heat transfer coefficient obtained from the experiments are utilised as input in numerical simulations with the Finite-Pointset-Method (FPM). Comparison between experiments and simulations is done to validate the recently implemented evaporation modelling in the MESHFREE software.
  • Publication
    Fully coupled wet cylindrical turning simulation using the Finite-Pointset-Method
    ( 2021) ;
    Barth, Enrico
    ;
    Quellhorst, Alexander
    ;
    Seifarth, Tobias
    ;
    ;
    Nabbout, Kaissar
    ;
    Sommerfeld, Martin
    In industrial machining operations, many turning processes are carried out under wet conditions. In contrast, most simulation tools are only suitable for dry cutting processes due to challenges of modeling fluid-structure-interactions (FSI). In this paper, a wet, fully coupled cutting simulation using the Finite-Pointset-Method (FPM) is presented and validated for industrially relevant cylindrical turning. To facilitate the required reduction of the calculation effort, different routines like adaptive numerical discretization are applied. The results indicate different cutting fluid effects like evaporation areas around the chip.
  • Publication
    Data for a simulation of metal cutting with cutting fluid using the Finite-Pointset-Method
    ( 2021) ;
    Barth, Enrico
    ;
    Seifarth, Tobias
    ;
    Höchel, Maximilian
    ;
    ;
    Eisenträger, Almut
    The measurement and simulation data, their preparation and the simulation setup published in this co-submission are related to the article ""Simulation of metal cutting with cutting fluid using the Finite-Pointset-Method"". Wet and dry turning experiments were conducted at the Institute for Machine Tools and Factory Management(IWF), Berlin, Germany. Required adaptions of the used software MESHFREE were performed at Fraunhofer ITWM, Kaiserslautern, Germany. Both institutes collaboratively developed and validated the orthogonal cutting simulation model using the Finite-Pointset-Method (FPM). In this paper all measurement and simulation data and their preparation methods are presented in detail. This includes the preparation methods of process forces, analysis of chip morphology images as well as measured contact lengths on tool rake faces. Moreover, the experimental and simulation data are provided at the Mendeley Data repository. Hence the reader can use the data for own validations and analysis. Furthermore, the used simulation model files are completely published at the Mendeley Data repository. It allows the reader to retrace all settings. In addition, this enables to repeat the simulations and to simulate other process parameter combinations according to own interests.