Now showing 1 - 2 of 2
  • Publication
    Effect of laser-beam and hybrid-laser-arc welding parameters and filler metal on microstructure and mechanical properties of thick heat-treated steel X8Ni9+QT640 for cryogenic service
    ( 2018)
    El-Batahgy, A-M.
    ;
    Gook, S.
    ;
    Gumenyuk, A.
    ;
    Rethmeier, M.
    The present research work encloses results of experimental investigations of the interaction between welding process parameters for laser-beam and hybrid-laser-arc as well as type of the filler metal and the achievable mechanical properties of the weld joints on steel grade X8Ni9+QT640 for cryogenic service containing 9% nickel. The results obtained contribute to the development and conversion in the industrial practice a new laser beam-based welding technology for the automated manufacturing of facilities for the liquefaction, storage and the transport of natural gases (LNG facilities). The results show, that the martensitic microstructure of the laser weld metal including low amount of retained austenite not exceeding 3.5% leads to the relatively low V-notch impact energy. The remarkable heterogeneity in the chemical composition of the weld metal through the weld thickness could be recognized in the case of hybrid-laser-arc welding with ERNiCrMo-3 austenitic filler metal, what also led to insufficient impact toughness of the weld metall. The most promising results could be achieved by using 11%Ni filler wire, which is similar to the base metal and provides a homogeneous microstructure with uniform distribution of Ni through the weld seam. It is remarkable, that a correlation between Charpy impact toughness and wire feeding speed and respectively process heat input exists. The highest toughness values were 134±58 J at -196 °C. The both laser as well as laser-hybrid welds passed the tensile test. The failure stress of 720±3 MPa with a fracture location in the base material was achieved for all samples tested.
  • Publication
    Laser and hybrid laser-arc welding of cryogenic 9%Ni steel for construction of LNG storage tanks
    ( 2015) ;
    Forquer, Matthew
    ;
    ; ;
    El-Batahgy, Abdel-Monem
    Heat treated 9%Ni steel is considered the most suitable and economic material for construction of large-size Liquefied Natural Gas (LNG) storage tanks which operate at cryogenic temperatures (-196°C). Strength above 700 MPa as well as a minimum impact value of 60 J are required to ensure reliable operation of the LNG tanks at operating temperature. Conventional arc welding processes including shielded metal arc welding (SMAW), gas metal arc welding (GMAW), gas tungsten arc welding (GTAW) and submerged arc welding (SAW) are currently used in construction of LNG tanks. Ni based filler wire is the preferred filler metal of choice in LNG tank construction. The main problem with this choice is the lower mechanical properties, particularly tensile strength of the weld metal. To compensate, the wall thickness needs to be excessively thick to ensure the strength of the welded structures. Ni based filler material is expensive and a large quantity is needed to fill the multi-pass weld grooves. These factors significantly add to the cost in the fabrication of LNG storage tanks. For these reasons, exploration of new welding technologies are a priority. A big potential can be seen in laser based welding techniques. Laser beam welding results in much smaller weld zone with chemical composition and mechanical properties similar to that of the base material. Laser welding is a much faster process and allows for a joint geometry which requires less filler material and fewer welding passes. The advantages of laser welding can help to overcome the problems pointed out above. Trials of autogenous laser welding, laser cold-wire welding and hybrid laser-arc welding (HLAW) conducted on the 9%Ni steel are presented in this paper. Chemical composition of the weld metal as well as effects of welding parameters on the weld formation, microstructure and tensile strength is discussed. Filler wire penetration depth as well as character of its distribution in the narrow laser welds was examined using Electron Probe Microanalysis (EPMA).