Now showing 1 - 2 of 2
  • Publication
    Image-Based Tool Characterization and DEM Simulation of Abrasive Brushing Processes
    ( 2024)
    Hoyer, Anton
    ;
    Brushing with bonded abrasives is a finishing process used for deburring, edge rounding, and roughness reduction. However, due to the complex motion, chipping, and wear behavior of abrasive filaments, industrial brushing processes have historically relied on empirical knowledge. To gain a better understanding of filament interactions, a physical model based on the discrete element method was developed to simulate process forces and contact areas. Filament patterns of round brushes were determined through the use of laser line triangulation and image processing. These filament patterns showed interlocked filaments and yielded more accurate results when used in brushing simulations than the oversimplified square patterns, which were used in previous research. Simulation confirms the occurrence of filament interactions, distinguishes between sweeping and striking filament motions, and reveals dynamic behavior at high brushing velocities that may increase undesirable tool wear.
  • Publication
    Modeling of the wet immersed tumbling process with the Discrete Element Method (DEM)
    ( 2021) ;
    Fürstenau, J.-P.
    ;
    ;
    Yabroudi, Sami
    ;
    ;
    Immersed tumbling is an industrially established process for finishing of components made of metal, ceramic or plastic. In this process, the components are completely surrounded by a wet, abrasive medium, which allows burrs to be removed and surfaces to be polished. In order to gain specific insights into the influence and flow properties of the abrasive media used in this process, numerical approaches using the Discrete Element Method (DEM) with the Rocky DEM software are presented within these investigations. A complete process simulation could be realised by means of a digital machine tool. The immersed tumbling process with cone-shaped polymer abrasive media is implemented by use of a liquid bridge model. The results were validated by experiments with an industrially used immersed tumbling machine tool and for the first time allow sound statements about the contact conditions and interactions of the abrasive media with the workpiece.