Now showing 1 - 2 of 2
  • Publication
    Investigation of liquid metal embrittlement of dual phase steel joints by electro-thermomechanical spot-welding simulation
    ( 2019)
    Frei, Julian
    ;
    ; ;
    Böhne, Christoph
    ;
    Meschut, Gerson
    A 3D electro-thermomechanical model is established in order to investigate liquid metal embrittlement. After calibration to a dual phase steel of the 1000 MPa tensile strength class, it is used to analyse the thermo-mechanical system of an experimental procedure to enforce liquid metal embrittlement during resistance spot welding. In this procedure, a tensile stress level is applied to zinc coated advanced high strength steel samples during welding. Thereby, liquid metal embrittlement formation is enforced, depending on the applied stress level and the selected material. The model is suitable to determine and visualise the corresponding underlying stresses and strains responsible for the occurrence of liquid metal embrittlement. Simulated local stresses and strains show good conformity with experimentally observed surface crack locations.
  • Publication
    Methods to obtain weld discontinuities in spot-welded joints made of advanced high-strength steels
    ( 2011)
    Gaul, H.
    ;
    Brauser, S.
    ;
    Weber, G.
    ;
    Rethmeier, M.
    Resistance spot welding is the major joining technique in mass car production. This applies in particular to high-strength steel and advanced high-strength steel (AHSS) joining of thin sheet steel components for lightweight body shell structures. Joining of AHSS in mass production might lead to weld discontinuities under certain circumstances. Those discontinuities in form of cracks might be an initial start of cracking in the spot-welded joints regarding fatigue loads. It is of great interest to figure out, if, in comparison to specimens without weld discontinuities, the crack initiating point changes and if the fatigue resistance might be reduced by the discontinuities. In this contribution, an overview of potential discontinuities is given. Their possible causes are discussed and means for their detection are highlighted. Among the possible causes of weld discontinuities, two major groups are distinguished: the welding parameters as primary influences in the welding process, and the production-specific influences as secondary ones. With emphasis on major cracks penetrating the weld nugget, these influences are analysed. Finally, a combination of extreme welding parameters with production-specific influences is chosen in order to establish a method which enables the preparation of fatigue test specimens with reproducible major cracks in different locations of the spot-welded joints. This method is than applied in order to prepare spot weld specimens for fatigue tests.