Now showing 1 - 2 of 2
  • Publication
    Avoidance of End Crater Imperfections at High-Power Laser Beam Welding of Closed Circumferential Welds
    The present work deals with the development of a strategy for the prevention of end crater defects in high-power laser welding of thick-walled circumferential welds. A series of experiments were performed to understand the influence of the welding parameters on the formation of the imperfections such as pores, cracks, excessive root-side drop-through and shrinkage cavities in the overlap area. An abrupt switch-out of the laser power while closing the circumferential weld leads to a formation of a hole which passes through the whole welded material thickness. A laser power ramp causes solidification cracks which are initiated on the transition from full-penetration mode to partial penetration. Strategies with a reduction of the welding speed shows a creation of inadmissible root sagging. Defocusing the laser beam led to promising results in terms of avoiding end crater imperfections. Cracks and pores could be effectively avoided by using defocusing techniques. A strategy for avoiding of end crater defects was tested on flat specimens of steel grade S355J2 with a wall thickness of 10 mm and then transferred on the 9.5 mm thick pipe sections made of high-strength steel X100Q.
  • Publication
    Effect of laser-beam and hybrid-laser-arc welding parameters and filler metal on microstructure and mechanical properties of thick heat-treated steel X8Ni9+QT640 for cryogenic service
    ( 2018)
    El-Batahgy, A-M.
    ;
    Gook, S.
    ;
    Gumenyuk, A.
    ;
    Rethmeier, M.
    The present research work encloses results of experimental investigations of the interaction between welding process parameters for laser-beam and hybrid-laser-arc as well as type of the filler metal and the achievable mechanical properties of the weld joints on steel grade X8Ni9+QT640 for cryogenic service containing 9% nickel. The results obtained contribute to the development and conversion in the industrial practice a new laser beam-based welding technology for the automated manufacturing of facilities for the liquefaction, storage and the transport of natural gases (LNG facilities). The results show, that the martensitic microstructure of the laser weld metal including low amount of retained austenite not exceeding 3.5% leads to the relatively low V-notch impact energy. The remarkable heterogeneity in the chemical composition of the weld metal through the weld thickness could be recognized in the case of hybrid-laser-arc welding with ERNiCrMo-3 austenitic filler metal, what also led to insufficient impact toughness of the weld metall. The most promising results could be achieved by using 11%Ni filler wire, which is similar to the base metal and provides a homogeneous microstructure with uniform distribution of Ni through the weld seam. It is remarkable, that a correlation between Charpy impact toughness and wire feeding speed and respectively process heat input exists. The highest toughness values were 134±58 J at -196 °C. The both laser as well as laser-hybrid welds passed the tensile test. The failure stress of 720±3 MPa with a fracture location in the base material was achieved for all samples tested.