Now showing 1 - 6 of 6
  • Publication
    Design of a pressure sensitive matrix for analyzing direct haptic patient-therapist interaction in motor rehabilitation after stroke
    ( 2017)
    Pust, M.
    ;
    Ivanova, E.
    ;
    Schmidt, H.
    ;
    Krüger, J.
    Robot based therapy is one of the prevalent therapeutic approaches in motor stroke rehabilitation. It is often used in hospitals in combination with conventional therapy. In order to optimize human-robot interaction, we aim to investigate how a therapist physically supports patients during motor training of the upper extremities. This paper presents the design of a flexible textile sensor matrix, which measures the pressure exerted between therapist and patient during direct haptic interaction as well as the hand position and orientation in space. The matrix contains 144 sensors which enables measuring pressure intensity and localization of areas where the pressure is applied. The measurement matrix was evaluated with four healthy participants.
  • Publication
    User-centered design of a patient's work station for haptic robot-based telerehabilitation after stroke
    ( 2017)
    Ivanova, E.
    ;
    Minge, M.
    ;
    Schmidt, H.
    ;
    Thüring, M.
    ;
    Krüger, J.
    Robotic therapy devices have been an important part of clinical neurological rehabilitation for several years. Until now such devices are only available for patients receiving therapy inside rehabilitation hospitals. Since patients should continue rehabilitation training after hospital discharge at home, intelligent robotic rehab devices could help to achieve this goal. This paper presents therapeutic requirements and early phases of the user-centered design process of the patient's work station as part of a novel robot-based system for motor telerehabilitation.
  • Publication
    Computerised mirror therapy with Augmented Reflection Technology for early stroke rehabilitation
    ( 2017)
    Hoermann, S.
    ;
    Santos, L.F. dos
    ;
    Morkisch, N.
    ;
    Jettkowski, K.
    ;
    Sillis, M.
    ;
    Devan, H.
    ;
    Kanagasabai, P.S.
    ;
    Schmidt, H.
    ;
    Krüger, J.
    ;
    Dohle, C.
    ;
    Regenbrecht, H.
    ;
    Hale, L.
    ;
    Cutfield, N.J.
    Purpose: New rehabilitation strategies for post-stroke upper limb rehabilitation employing visual stimulation show promising results, however, cost-efficient and clinically feasible ways to provide these interventions are still lacking. An integral step is to translate recent technological advances, such as in virtual and augmented reality, into therapeutic practice to improve outcomes for patients. This requires research on the adaptation of the technology for clinical use as well as on the appropriate guidelines and protocols for sustainable integration into therapeutic routines. Here, we present and evaluate a novel and affordable augmented reality system (Augmented Reflection Technology, ART) in combination with a validated mirror therapy protocol for upper limb rehabilitation after stroke. Method: We evaluated components of the therapeutic intervention, from the patients' and the therapists' points of view in a clinical feasibility study at a rehabilitation centre. We also assessed the integration of ART as an adjunct therapy for the clinical rehabilitation of subacute patients at two different hospitals. Results: The results showed that the combination and application of the Berlin Protocol for Mirror Therapy together with ART was feasible for clinical use. This combination was integrated into the therapeutic plan of subacute stroke patients at the two clinical locations where the second part of this research was conducted. Conclusions: Our findings pave the way for using technology to provide mirror therapy in clinical settings and show potential for the more effective use of inpatient time and enhanced recoveries for patients.
  • Publication
    Richtlinien für die Gestaltung von visuellem Biofeedback in der neurologischen Gangrehabilitation nach Schlaganfall
    ( 2010)
    Brüning, M.
    ;
    Hussein, S.
    ;
    Bardeleben, A.
    ;
    Schmidt, H.
    ;
    Krüger, J.
    ;
    Hesse, S.
  • Publication
    Structural analysis method for optimized design of complex kinematic structures using static and dynamic models and application to a robotic walking simulator
    ( 2010)
    Brüning, M.
    ;
    Hussein, S.
    ;
    Schmidt, H.
    ;
    Krüger, J.
    This paper describes an approach for structural analysis for design improvements of complex, e.g. hybrid, kinematic structures utilizing static and dynamic models. It is suitable to locate improvement potentials in existing mechanisms, facilitate goal-oriented design of new mechanisms or for a simulation-based controller synthesis e.g. a compliance-controller. To receive a model close to reality, mechanical influences, which are commonly neglected in conventional robot models, are analyzed regarding their relevance and if suitable integrated into the model. Investigated effects are the mechanical compliances of links and gears, compliances of the actuators resulting from the control circuits as well as non-linear frictional influences of the actuators. The kinematic and dynamic model is realized as an iterative solution instead of a closed analytic solution with extensive symbolic expressions. This leads to an analysis with clearly arranged aspects, further more the model is suitable for usage in a real-time control. The mechanical influences are analyzed analytically. The derived dynamic modeling is based on the Newton-Euler formulation. The approach is applied to the robotic walking simulator HapticWalker, a device for robot assisted gait rehabilitation. It consists of two identical hybrid parallel-serial manipulators. The forces calculated by the use of the developed model are in a good congruence with measured values. An obviously improved correspondence between measured and calculated values is achieved by the non-linear friction model of the actuators.
  • Publication
    Visuelles Biofeedback für die gerätegestützte neurologische Gangrehabilitation nach Schlaganfall
    ( 2010)
    Brüning, M.
    ;
    Hussein, S.
    ;
    Bardeleben, A.
    ;
    Schmidt, H.
    ;
    Krüger, J.
    ;
    Hesse, S.