Now showing 1 - 5 of 5
  • Publication
    The effect of tack welding on numerically calculated welding-induced distortion
    ( 2012)
    Heinze, C.
    ;
    Schwenk, C.
    ;
    Rethmeier, M.
    A single-layer pulsed gas metal arc weld of structural steel S355J2+N with a thickness of 5 mm is experimentally and numerically investigated. Two tack welds are considered in the numerical simulation into two different ways. First, the tack welds are represented by elements belonging to the initial material. This implies that the "tack weld material" was not exposed to any thermal load or phase transformation before actual welding was performed. The weld seam is shortened and there is an influence on the stiffness of the whole structure affecting the calculation result. Secondly, the tack welds were simulated as conducted in the experimental welding procedure. The cases considering tack welding are compared to a simulation neglecting tack welding and to the experimental results. The influence of tack welds on the calculated welding-induced distortion is clarified and a contribution to an improved simulation-based prediction of welding-induced distortion is possible by modeling tack welding according to the realistic fabrication procedure.
  • Publication
    Numerical sensitivity analysis of welding-induced residual stress depending on variations in continuous cooling transformation behavior
    ( 2011)
    Heinze, C.
    ;
    Schwenk, C.
    ;
    Rethmeier, M.
    ;
    Caron, J.
    The usage of continuous cooling transformation (CCT) diagrams in numerical welding simulations is state of the art. Nevertheless, specifications provide limits in chemical composition of materials which result in different CCT behavior and CCT diagrams, respectively. Therefore, it is necessary to analyze the influence of variations in CCT diagrams on the developing residual stresses. In the present paper, four CCT diagrams and their effect on numerical calculation of residual stresses are investigated for the widely used structural steel S355J2 + N welded by the gas metal arc welding (GMAW) process. Rather than performing an arbitrary adjustment of CCT behavior, four justifiable data sets were used as input to the numerical calculation: data available in the Sysweld database, experimental data acquired through Gleeble dilatometry tests, and TTT/CCT predictions calculated from the JMatPro and Edison Welding Institute (EWI) Virtual Joining Portal software. The performed numerical analyses resulted in noticeable deviations in residual stresses considering the different CCT diagrams. Furthermore, possibilities to improve the prediction of distortions and residual stress based on CCT behavior are discussed.
  • Publication
    General standard for welding simulation
    ( 2011)
    Schwenk, C.
    ;
    Tikhomirov, D.
    ;
    Eßer, G.
    ;
    Rethmeier, M.
    Für die Abgrenzung der Anwendbarkeit verschiedener Methoden der numerischen Schweißsimulation sowie für die Vereinheitlichung der Voraussetzungen und der durchzuführenden Schritte bei der Simulation sind normative Regelwerke für den Anwender erforderlich. Da es derzeit noch keine normähnlichen Dokumente auf diesem Gebiet gibt, wurde vom Deutschen Institut für Normung e.V. DIN in Zusammenarbeit mit der Forschungsvereinigung des DVS Deutscher Verband für Schweißen und verwandte Verfahren e.V. ein Arbeitsausschuss gegründet, welcher sich mit der Erarbeitung der entsprechenden Dokumente befasst. Der vorliegende Beitrag konzentriert sich auf die Vorstellung der neuen DIN Spec 32534-1, welche die grundlegenden Simulations-Schritte erläutert und ihre Anwendungsfelder sowie die Schlüsselbegriffe s pezifiziert. Des Weiteren wurde eine allgemein gültige Simulationsstruktur erarbeitet, welche als Empfehlung für den Auftraggeber und den Auftragnehmer bei der Formulierung und Abwicklung eines Dienstleistungsauftrages sowie für den Neueinstieg in die Schweißsimulation dienen soll. Schließlich wird ein Ausblick auf die weiteren Themenfelder des Arbeitsausschusses sowie auf die internationalen Aktivitäten auf diesem Gebiet gegeben.
  • Publication
    Different modeling approaches for efficient distortion calculation of an automotive assembly
    ( 2011)
    Thater, R.
    ;
    Perret, W.
    ;
    Schwenk, C.
    ;
    Alber, U.
    ;
    Rethmeier, M.
    In contrast to other simulation fields like forming simulation, welding simulation is still not widely used in industrial environments. A high user expertise, a high time-to-solution and the result accuracy are the most important problems that hinder its extensively application. Different modeling approaches influence these aspects and an analysis of their implementation is of interest especially for the automotive industry as a key user for production simulation. In this study a MIG welded aluminum assembly from the automotive industry is investigated. Experimental and numerical methods are performed. On the experimental side, temperature cycles are obtained with thermocouples and transient distortion fields are measured using a 3D optical analysis system. On the numerical side, threedimensional nonlinear welding simulations are performed using the welding simulation software simufact.welding to obtain the transient distortion field of the investigated industrial assembly. Several modeling approaches are considered and are discussed with respect to the time-to-solution (modeling effort and the calculation time) and the result accuracy. Finally, a FE model with a good result accuracy and a reasonable calculation time for an industrial application is presented.
  • Publication
    Approach to assess a fast welding simulation in an industrial environment - application for an automotive welded part
    ( 2011)
    Perret, W.
    ;
    Thater, R.
    ;
    Alber, U.
    ;
    Schwenk, C.
    ;
    Rethmeier, M.
    Fusion welding processes are widely used for joining metal structures, such as pipes, ships, and cars. In general, these joining processes offer a very good compromise between reliability, safety, cost and maintenance which are important issues in the current economical context. The negative heat effects of welding, i.e. distortions and residual stresses of the welded parts, are well known and many researches in this field have already been done in the last decades in order to minimize them. On the experimental side, many sophisticated procedures have become state of the art to deal with this problem. On the computational side, the improvement of the simulation algorithms and the computing power enables the simulations of many physical phenomena occurring during the welding process. The implementation of welding simulation techniques is nevertheless not an easy task and often associated with expert knowledge which hinders their global application in an industrial environment. This paper is focused on the industrial requirements of a welding simulation software with special respect to the needs of the automotive industry. The necessary information to run a welding simulation and the expectations of a weld specialist without deep knowledge in numerical methods are investigated. These expectations are tested on an automotive welded assembly with a commercially available welding simulation software designed especially for the needs of the automotive industry. A welding experiment is done and the measured temperature distributions and distortions serve as reference to validate the simulation results. The result quality of the simulations of temperature fields and distortions is in best agreement with experimental data. The workflow is well adapted for the considered industrial requirements and the time-tosolution as well as the computational costs are acceptable, whereas the efficient calibration of the heat input model is still a point which will be further investigated in current and future research works.