Now showing 1 - 3 of 3
  • Publication
    Application of additive manufactured tungsten carbide-cobalt electrodes with interior flushing channels in S-EDM
    ( 2020) ; ; ;
    Yabroudi, Sami
    ;
    ;
    Bergmann, André
    Application fields of electrical discharge machining (EDM) are limited due to given process conditions. Manufacturing of parts with high aspect ratios and the application of multi-axis machining are limited due to process instabilities caused by removed particles. A promising approach to improve EDM process conditions, especially in sinking EDM (S-EDM), is the utilization of flushing channels in the tool electrode. However, with increasing complexity of the tool electrode geometry and the local integration of these flushing channels, conventional tool electrode manufacturing by cutting is limited. In contrast to that, the machining process selective laser melting (SLM) does not have such limitations. The appropriate integration of flushing channels, even for complex electrode geometries, improves process conditions during EDM in a variety of applications. This leads to a higher material removal rate and reduced tool wear compared to machining without flushing. Additionally, the number of required tool electrodes can be reduced, as SLM enables an efficient integration and miniaturization of all features in a single electrode. Because of its wear resistance and stability, tungsten carbide is an ideal tool electrode material, which is commonly applied in drilling EDM. After identifying suitable process parameters for roughing EDM with additively manufactured tungsten carbide cobalt tool electrodes, different forms of flushing channels were analysed in order to establish a fast process with minimum tool electrode wear. The results concerning material removal rate and the relative tool wear could be improved by applying internal flushing, though the tool wear stayed at a worse level compared to conventional tool electrode materials.
  • Publication
    Use of Digital Twins in Additive Manufacturing Development and Production
    ( 2019)
    Bergmann, André
    ;
    The megatrend of the digitization of the industry is picking up speed. Today, the digital twin is an important component in the strategic positioning of a manufacturing company. The Gartner Report predicts that more than 50% of large industrial companies will be using the digital twin and that the effectiveness of the companies can be increased by up to 10% by 2021. For this, it is necessary on the one hand that the products are equipped with sensors, in order to be able to provide the data for the digital twin. On the other hand, it is also necessary to be capable to evaluate the data unambiguously with regard to the products and to be able to initiate appropriate measures to control them. In addition, insights can be gained into the improvement of subsequent product generations and their production. The virtual representation of the product over its lifecycle requires a coupling with the real environment, in which lifecycle data are recorded via sensory systems and continuously imported into the virtual environment. Thus, the information and actual properties in the digital twin are mapped to the real conditions and the product condition in a dynamic data model. For this, it is necessary to integrate the information into the data systems of the product development and manufacturing processes. Based on this data, the behavior can be virtually tested, analyzed and predicted before actual production and use. This enables the engineer and manufacturer to further develop the product at reduced costs as early as the design phase. The virtual validation is significantly extended by the collected database in the digital twin. For companies, this means a reduction of costs by reducing material and time expenditures as well as process times - for example, with increased utilization time. On the basis of this study, a product example will be used to show which framework conditions are necessary for the use of the digital twin and which effects can be achieved in product development. It is also estimated to what extent the quality of the product and the process can be improved. In the area of additive manufacturing, for example, the question arises how quality data can be used either to control the machine parameters of the printing process in a targeted manner (feedback-to-planning) so that the desired product quality is achieved, or to adapt the product models before manufacturing (feedback-to-engineering) so that the desired product quality can be produced with existing parameters. The data alone is of little use to the companies. In addition to methodological and organizational issues, it is also necessary at the technological level to prepare the data for the various lifecycle phases of the product development process. This is where automated data evaluation in the form of AI comes in. Algorithms allow data evaluation by identifying patterns and deviations and consequently interpreting them for feedback-to-planning and feedback-to-engineering.
  • Publication
    Manufacturing of carbide tools by Selective Laser Melting
    ( 2018) ;
    Bergmann, André
    ;
    Application fields of electrical discharge machining (EDM) are limited due to given process conditions. When producing structures of high aspect ratios or using multi-axis machining, removed particles assemble at the machining zone, leading to process instabilities and increasing tool wear. A promising approach to improve EDM process conditions is the utilization of flushing channels in the tool electrode. However, with increasing complexity of the electrode geometry and the local integration of the mentioned flushing channels, conventional electrode manufacturing reaches its limitations. By applying Selective Laser Melting (SLM), these limitations are eliminated. An additional benefit is the efficient use of material during SLM, where nearly no waste is produced, because remaining powder can be used for the next SLM-process. The appropriate integration of flushing channels, even for complicated electrode geometries, improves process conditions during EDM in a variety of applications, leading to a higher material removal rate VW and reduced tool wear TH compared to machining without flushing. Additionally, the number of required tool electrodes can be reduced, as SLM enables an efficient integration and miniaturization of all features in a single electrode, what results in a far more sustainable process chain. Of particular interest in the field of EDM is carbide. Because of its wear resistance and stability, it is an ideal electrode material, which is commonly applied in µEDM. Tungsten carbide-cobalt is representative for this group of materials, which is already used in tool manufacturing. Several tests show a general suitability of carbide tool electrodes made by SLM for EDM-processing. However, the SLM process parameters and the composition of the carbide-cobalt show significant impact to the EDM results. A lower proportion of cobalt leads to reduced material removal rates, whereas the level of tool wear remains at a similar level. In order to benefit from the advantages of additive manufactured carbide tool electrodes, this investigation aims at decreasing waste of material and the number of required tool electrodes.