Now showing 1 - 2 of 2
  • Publication
    High-Performance Electro-Discharge Drilling with a Novel Type of Oxidized Tool Electrode
    Electro-discharge drilling is a key technology for manufacturing sophisticated nozzles in a broad range of automotive and aerospace applications. The formation of debris in the working gap leads to arcs and short circuits on the lateral surface when state-of-the-art tool electrodes are used. As a result, limited drilling depth, increased linear tool wear, and the conicity of boreholes are still challenges. In this work, a new approach for the passivation of the lateral surface of copper tool electrodes by oxidation is shown. The comparison with state-of-the-art tool electrodes showed a reduction in the erosion duration by 48% for machining hardened steel. Promising improvements could be achieved by the thermal oxidation of the tool electrodes with the aim of increasing the electrical resistivity of the lateral surface of the tool electrode. However, due to the loss of strength, the high oxide layer thickness, and the partial delamination of the oxide layer, further comprehensive investigations on the influence of the oxidation temperature need to be conducted. Future adjustments with lower oxidation temperatures will be carried out.
  • Publication
    Validation of different tungsten carbide-cobalt grades as tool electrode material for sinking EDM
    In sinking electrical discharge machining (EDM), tool electrode wear is crucial for an economical production. The tool electrode wear affects the process efficiency and determines the number of required tool electrodes for a specific machining process. Therefore, the relative tool wear, describing the relation of removed material volume between tool and workpiece electrode, needs to be minimised. The tool wear characteristics in sinking EDM depend strongly on EDM processing parameters and the applied electrode materials. Especially in micro-EDM, a significant increase of relative tool wear is representative. Because of its thermophysical properties tungsten carbide-cobalt (WC-Co) is a suitable material for the application as sinking EDM tool electrode. The economical production of WC-Co form electrodes for EDM sinking is enabled by recent advancements in precision milling of hard materials. Due to non-existent research on which composition of WC-Co is most advantageous for the application as sinking EDM tool electrode material, previous investigations have been intensified to describe correlations between material properties, EDM processing parameters and EDM processing results concerning material removal rate and relative tool wear. Therefore, various WC-Co grades with differing grain size and cobalt content were analysed in sinking EDM experimental studies. It was observed that the factor grain size showed an ambiguous effect concerning the process results. An increasing cobalt content led to a reduction of relative tool wear, which can be explained by the microstructure of the cobalt binder phase with its higher electrical conductivity. The WC-Co grades with beneficial EDM processing results have been further investigated in EDM parameter studies with differing tool electrode geometries. The experimental results concerning relative tool wear, with a minimum of 3 % for macro- and 5 % for micro-sized geometries, proved the suitability of specific WC-Co compositions as tool electrode material for sinking EDM.