Now showing 1 - 2 of 2
No Thumbnail Available
Publication

Validierung von AM-Laser-Metal-Deposition Simulationen mittels in-situ Verzugsmessungen an der aufgebauten Geometrie

2018 , Biegler, Max

Aufgrund der schnellen, zyklischen Aufheizung und Abkühlung tritt Verzug in Additive Manufacturing (AM) Laser Metal Deposition (LMD) Bauteilen auf und kann die Maßhaltigkeit vermindern, sowie zu Bauteilfehlern beitragen. Numerische Struktursimulation bietet das Potential, Verzug rechnerisch zu optimieren. Zur Etablierung der Simulation werden umfassende experimentelle Daten zum Abgleich, verlässliche Modelle sowie erprobte Arbeitsabläufe benötigt. In diesem Vortrag wird eine neue Messmethodik zur in-situ Verzugsmessung mittels Digital-Image-Correlation (DIC) beim additiven Aufbau einer Wandstruktur aus 1.4404 nichtrostendem Stahl demonstriert. Im Gegensatz zu etablierten Messmethoden, die den Verzug der Substratplatte betrachten, kann mittels DIC direkt an der neu aufgebauten Geometrie gemessen werden. Die gewonnenen Messdaten werden mit den Ergebnissen einer AM-Struktursimulation verglichen und die Übereinstimmungen und Abweichungen speziell im Hinblick auf zukünftige Herausforderungen im Bereich der Simulation diskutiert.

No Thumbnail Available
Publication

In-situ distortions in LMD additive manufacturing walls can be measured with digital image correlation and predicted using numerical simulations

2018 , Biegler, Max , Graf, Benjamin , Rethmeier, Michael

Distortions in Additive Manufacturing (AM) Laser Metal Deposition (LMD) occur in the newly-built component due to rapid heating and solidification and can lead to shape deviations and cracking. This paper presents a novel approach to quantify the distortions experimentally and to use the results in numerical simulation validation. Digital Image Correlation (DIC) is applied together with optical filters to measure in-situ distortions directly on a wall geometry produced with LMD. The wall shows cyclic expansion and shrinking with the edges bending inward and the top of the sample exhibiting a slight u-shape as residual distortions. Subsequently, a structural Finite Element Analysis (FEA) of the experiment is established, calibrated against experimental temperature profiles and used to predict the in-situ distortions of the sample. A comparison of the experimental and numerical results reveals a good agreement in length direction of the sample and quantitative deviations in height direction, which are attributed to the material model used. The suitability of the novel experimental approach for measurements on an AM sample is shown and the potential for the validated numerical model as a predictive tool to reduce trial-and-error and improve part quality is evaluated.