Now showing 1 - 2 of 2
No Thumbnail Available
Publication

Gear Wheel Finishing with Abrasive Brushing Tools to Improve the Surface Quality of Tooth Flanks for the Industrial Application

2022 , Gülzow, Bernhard , Uhlmann, Eckart

A high surface quality of tooth flanks can improve the service life and the performance of gears, as well as reduce acoustic emissions. However, high demands on the gear geometry pose a challenge for the finishing of tooth flank surfaces because the dimensional accuracy that can be achieved with modern grinding processes must not be impaired by the finishing process. A preceding study has shown fundamentally that profiled abrasive brushing tools can be used to improve the quality of individual tooth flank surfaces. Due to the integration into the grinding machine, it represents a promising alternative to common finishing applications. Before the process can be used in an industrial environment, process reliability and tool life must be examined. For this purpose, complete reference gearwheels (39 × 10) were finished with the brushing tools. It could be shown that the surface roughness can be reliably reduced by ΔRa ≈ 0.2 µm by using a single brush for an entire gearwheel without changing the gear geometry. In addition to the influence of the tool specifications on the work result, the influence of the initial roughness after grinding was considered in particular. It was found that the achievable surface roughness depends significantly on the depth of the grinding grooves, as these are retained as desired, while the roughness peaks are fully smoothed. Furthermore, a device for the machine-integrated profiling and dressing of brushing tools was successfully designed, implemented, and tested.

No Thumbnail Available
Publication

Optimising the grinding wheel design for flute grinding processes utilising numerical analysis of the complex contact conditions

2020 , Uhlmann, Eckart , Gülzow, Bernhard , Muthulingam, Arunan

Resource efficiency is gaining relevance in every aspect of production. Hence, cutting tools are exposed to high demands regarding productivity and quality. Considering the various grinding operations in tool manufacturing, flute grinding is the most significant process step as it defines the peripheral cutting edge and the rake face. Therefore, it has a substantial influence on the machining behaviour of, for example, milling tools. When it comes to helical flutes, the complex contact conditions between grinding wheel and tool blank during the multiaxial grinding process are particularly difficult to determine. Due to the lack of knowledge about those contact conditions, the grinding wheels typically used for flute grinding cannot wholly meet the actual process requirements. In order to optimise the design of the grinding wheels, a numerical model was developed. Based on that, a simulation tool was implemented to analyse the complex contact conditions during flute grinding depending on the process parameters and tool/workpiece geometry. The influence of different grinding parameters on the effective contact length, the specific material removal rate and the equivalent chip thickness was evaluated by employing the computer-based model. The generated results were then used to develop a new optimised tool concept for a more efficient flute grinding process.