Now showing 1 - 4 of 4
  • Publication
    Laser-Pulver-Auftragschweißen von funktional gradierten Materialien auf Cobalt-Chrom Basis
    Um Bauteile vor Verschleiß und Korrosion zu schützen werden Beschichtungen aus resistenteren Materialien aufgetragen. Hierzu zählen unter anderen die Legierungen auf Cobalt-Chrom Basis. Der diskrete Materialsprung ist jedoch unter thermischen und mechanischen Belastungen häufig Ursache für das Versagen der Beschichtung. In dieser Arbeit werden daher Materialgradierungen von verschiedenen Stahllegierungen zu einer Cobalt-Chrom Basislegierung untersucht. Die Ergebnissen werden dafür auch mit Resultaten zu vorangegangenen Untersuchungen verglichen. Kern der Arbeit bilden geätzte Schliffbilder der Materialpaarungen und Auswertungen mittels Farbeindringprüfung sowie die metallografische Bestimmung der Porosität. Ziel der Arbeit ist ein defektfreier Aufbau der funktional gradierten Materialpaarungen.
  • Publication
    Numerische Simulation einer AM-Prozesskette im DED Auftragschweißen
    Das DED Auftragschweißen ist ein additives Fertigungsverfahren für Metalle, bei dem das Material schichtweise auf ein Substrat aufgetragen wird. Die schnellen Temperaturzyklen rufen Spannungsgradienten im Bauteil hervor. Der schichtweise Aufbau der Bauteile verursacht eine anisotrope Mikrostruktur. Mittels nachgelagerter Wärmebehandlung können diese Effekte verringert werden. Im anschließenden Schritt der Prozesskette wird das additiv hergestellte Bauteil mittels Drahterodieren von dem Substrat abgetrennt. In diesem Beitrag wird eine thermo-mechanische Simulation der gesamten Prozesskette vorgestellt, welche den additiven Aufbau, Wärmebehandlung und das Abtrennen vom Substrat beinhaltet. Anstelle der in der Literatur üblichen schichtweisen Modellierungsstrategie für die DED Simulation wird das gesamte Bauteil in einem Stück vernetzt und der vollständig transiente, schichtweise Materialauftrag über Elementgruppen realisiert. Im Gegensatz zu früheren Simulationen muss der nichtlineare Kontakt zwischen den Schichten nicht berücksichtigt werden, was die Rechenzeiten deutlich verkürzt. Das Modell wurde validiert mittels Abgleiches des Verzugs aus Simulation und Experiment. Die Proben, bestehend aus DIN 1.4404 (AISI 316L), wurden nach jedem Prozessschritt 3D gescannt um den Verzug zu quantifizieren. Zusätzlich wurden Querschnitte und Härtetests nach Vickers von unterschiedlich behandelten Proben durchgeführt, um den Effekt der Wärmebehandlung auf die Mikrostruktur und die Härte des Bauteils zu untersuchen.
  • Publication
    Validierung von AM-Laser-Metal-Deposition Simulationen mittels in-situ Verzugsmessungen an der aufgebauten Geometrie
    Aufgrund der schnellen, zyklischen Aufheizung und Abkühlung tritt Verzug in Additive Manufacturing (AM) Laser Metal Deposition (LMD) Bauteilen auf und kann die Maßhaltigkeit vermindern, sowie zu Bauteilfehlern beitragen. Numerische Struktursimulation bietet das Potential, Verzug rechnerisch zu optimieren. Zur Etablierung der Simulation werden umfassende experimentelle Daten zum Abgleich, verlässliche Modelle sowie erprobte Arbeitsabläufe benötigt. In diesem Vortrag wird eine neue Messmethodik zur in-situ Verzugsmessung mittels Digital-Image-Correlation (DIC) beim additiven Aufbau einer Wandstruktur aus 1.4404 nichtrostendem Stahl demonstriert. Im Gegensatz zu etablierten Messmethoden, die den Verzug der Substratplatte betrachten, kann mittels DIC direkt an der neu aufgebauten Geometrie gemessen werden. Die gewonnenen Messdaten werden mit den Ergebnissen einer AM-Struktursimulation verglichen und die Übereinstimmungen und Abweichungen speziell im Hinblick auf zukünftige Herausforderungen im Bereich der Simulation diskutiert.