Now showing 1 - 4 of 4
  • Publication
    KI zur Prozessüberwachung im Unterpulverschweißen
    Beim Unterpulverschweißen sind die Prozessgeräusche ein Indikator für eine gute Fügequalität. Diese Beurteilung kann i.d.R. nur von einer erfahrenen Fachkraft durchgeführt werden. Eine kürzlich entwickelte künstliche Intelligenz kann automatisch das akustische Prozesssignal anhand vortrainierter Merkmale klassifizieren und die Fügequalität anhand des Geräuschs beurteilen. Der Algorithmus, einmal richtig trainiert, kann den Prüfaufwand beim Unterpulverschweißen deutlich reduzieren.
  • Publication
    Joining 30 mm Thick Shipbuilding Steel Plates EH36 Using a Process Combination of Hybrid Laser Arc Welding and Submerged Arc Welding
    This article presents a cost-effective and reliable method for welding 30 mm thick sheets of shipbuilding steel EH36. The method proposes to perform butt welding in a two-run technique using hybrid laser arc welding (HLAW) and submerged arc welding (SAW). The HLAW is performed as a partial penetration weld with a penetration depth of approximately 25 mm. The SAW is carried out as a second run on the opposite side. With a SAW penetration depth of 8 mm, the weld cross-section is closed with the reliable intersection of both passes. The advantages of the proposed welding method are: no need for forming of the HLAW root; the SAW pass can effectively eliminate pores in the HLAW root; the high stability of the welding process regarding the preparation quality of the weld edges. Plasma cut edges can be welded without lack of fusion defects. The weld quality achieved is confirmed by destructive tests.
  • Publication
    Material-adapted and process-reliable multi-wire submerged arc welding of large-diameter pipes
    ( 2022-03-07) ; ; ; ;
    Lichtenthäler, Frank
    ;
    Stark, Michael
    Ensuring the required mechanical-technological properties of welds is a critical issue in the application of multi-wire submerged arc welding processes in the manufacture of largediameter pipes made of high-strength fine-grained steels of grade X70 and higher according to API 5L. Excessive heat input of up to 10 kJ/mm is one of the main causes of the formation of microstructural areas in the heat-affected zone with deteriorated mechanical properties, such as impact toughness and tensile strength. In this work, a variant of a five-wire submerged arc welding process is proposed that reduces the weld volume and the heat input, while retaining the high process stability and production speed of multi-wire submerged arc welding. By adapting the welding wire configuration of a five-wire submerged arc welding process and the energetic parameters of the arcs, the high penetration depth of approx. 24 mm and a 10 % reduction in the weld cross-section could be achieved compared to the usual process configuration. This effect was transformed into a higher welding speed, which led to a reduction in the heat input. A concept for process monitoring is proposed in order to maintain constant manufacturing quality in large-diameter pipe production. In addition to the analysis of electrical process signals such as welding current and welding voltage, acoustic process monitoring using vibro-acoustic sensors provides reliable information on the stability of the welding process.
  • Publication
    Багатодротове дугове зварювання високоміцних дрібнозернистих сталей під флюсом
    ( 2022) ; ; ; ;
    Lichtenthäler, F.
    ;
    Stark, M.
    Ensuring the required mechanical-technological properties of welds is a critical issue in the application of multi-wire submerged arc welding process for welding high-strength fine-grained steels. Excessive heat input is one of the main causes for microstructural zones with deteriorated mechanical properties of the welded joint, such as a reduced notched impact strength and a lower structural robustness. A process variant is proposed which reduces the weld volume as well as the heat input by adjusting the welding wire configuration as well as the energetic parameters of the arcs, while retaining the advantages of multi-wire submerged arc welding such as high process stability and production speed