Now showing 1 - 2 of 2
  • Publication
    Microcrack formation during gas metal arc welding of high-strength fine-grained structural steel
    ( 2014)
    Heinze, C.
    ;
    Michael, T.
    ;
    Pittner, A.
    ;
    Rethmeier, M.
    The recent development of high-performance-modified spray arc processes in gas metal arc welding due to modern digital control technology and inverter power sources enables a focused spray arc, which results in higher penetration depths and welding speed. However, microcracks occurred in the weld metal while approaching the process limits of the modified spray arc, represented by a 20-mm double layer DV-groove butt-weld. These cracks were detected in structural steel exhibiting a yield strength level of up to 960 MPa and are neither dependent on the used weld power source nor a consequence of the modified spray arc process itself. The metallographic and fractographic investigations of the rather exceptional fracture surface lead to the classification of the microcracks as hot cracks. The effects of certain welding parameters on the crack probability are clarified using a statistical design of experiment. However, these microcracks do not impact the design specification for toughness in the Charpy V-notch test (absorbed energy at -40 °C for the present material is 30 J).
  • Publication
    Dependency of martensite start temperature on prior austenite grain size and its influence on welding-induced residual stresses
    ( 2013)
    Heinze, C.
    ;
    Pittner, A.
    ;
    Rethmeier, M.
    ;
    Babu, S.S.
    Austenite grain growth during welding is a critical factor for controlling weld microstructure in addition to nominal composition and thermal cycles. Recently, experimental data suggesting a decrease in martensite start temperature with a decrease in prior austenite grain size has been published. However, the actual sensitivity of this phenomenon on residual stresses evolution in the heat-affected zone has not been investigated, yet. Therefore, a numerical model was modified to consider this phenomenon. Numerical simulations were performed for welding of a low-alloy structural steel with minimum yield strength of 355 MPa (S355J2+N) and a heat-resistant steel P91 or 9Cr-1Mo, respectively. The results clarify the influence of prior austenite grain size on the residual stress development and show the importance martensite transformation temperatures and final martensite fraction. Consequently, the residual stress evolution of P91, which completely transforms to martensite while cooling, based on the enhanced model leads to maximum stress differences of 200 MPa in the heat-affected zone.