Now showing 1 - 5 of 5
No Thumbnail Available
Publication

Study on Duplex Stainless Steel Powder Compositions for the Coating of Thick Plates for Laser Beam Welding

2022 , Straße, A. , Gumenyuk, Andrey , Rethmeier, Michael

Duplex stainless steels combine the positive properties of its two phases, austenite and ferrite. Due to its good corrosion resistance, high tensile strength, and good ductility, it has multiple applications. But laser beam welding of duplex steels changes the balanced phase distribution in favor of ferrite. This results in a higher vulnerability to corrosion and a lower ductility. Herein, different powder combinations consisting of duplex and nickel for coating layers by laser metal deposition (LMD) are investigated. Afterward, laser tracks are welded, and the temperature cycles are measured. The ferrite content of the tracks is analyzed by feritscope, metallographic analysis, and electron backscatter diffraction. The goal is the development of a powder mixture allowing for a duplex microstructure in a two-step process, where first the edges of the weld partners are coated with the powder mixture by LMD and second those edges are laser beam welded. The powder mixture identified by the pretests is tested in the two-step process and analyzed by metallographic analysis, energy-dispersive X-ray spectroscopy, and Vickers hardness tests. The resulting weld seams show a balanced duplex microstructure with a homogenous nickel distribution and a hardness of the weld seam similar to the base material.

No Thumbnail Available
Publication

Design of experiments for laser metal deposition in maintenance, repair and overhaul applications

2013 , Graf, Benjamin , Ammer, Stefan , Gumenyuk, Andrey , Rethmeier, Michael

Modern and expensive parts lead to an increasing demand for maintenance, repair and overhaul (MRO) technologies. Instead of part replacement, MRO technologies are economically advantageous throughout the life cycle. Laser metal deposition as modern MRO technology can be used to repair cracks or protect damaged surfaces with a hard facing layer. It is necessary to adjust weld bead profile to the specific task. For this purpose, Design of Experiment (DoE) has a high potential to decrease experimental effort. In this paper, a full factorial design is used to determine the effect of process parameters on the geometric dimensions of the weld bead. The paper is of interest to engineers working with laser metal deposition as well as DoE methods.

No Thumbnail Available
Publication

3D laser metal deposition: Process steps for additive manufacturing

2018 , Graf, Benjamin , Marko, Angelina , Petrat, Torsten , Gumenyuk, Andrey , Rethmeier, Michael

Laser metal deposition (LMD) is an established technology for two-dimensional surface coatings. It offers high deposition rates, high material flexibility, and the possibility to deposit material on existing components. Due to these features, LMD has been increasingly applied for additive manufacturing of 3D structures in recent years. Compared to previous coating applications, additive manufacturing of 3D structures leads to new challenges regarding LMD process knowledge. In this paper, the process steps for LMD as additive manufacturing technology are described. The experiments are conducted using titanium alloy Ti-6Al-4V and Inconel 718. Only the LMD nozzle is used to create a shielding gas atmosphere. This ensures the high geometric flexibility needed for additive manufacturing, although issues with the restricted size and quality of the shielding gas atmosphere arise. In the first step, the influence of process parameters on the geometric dimensions of single weld beads is analyzed based on design of experiments. In the second step, a 3D build-up strategy for cylindrical specimen with high dimensional accuracy is described. Process parameters, travel paths, and cooling periods between layers are adjusted. Tensile tests show that mechanical properties in the as-deposited condition are close to wrought material. As practical example, the fir-tree root profile of a turbine blade is manufactured. The feasibility of LMD as additive technology is evaluated based on this component.

No Thumbnail Available
Publication

Laser metal deposition as repair technology for stainless steel and titanium alloys

2012 , Graf, Benjamin , Gumenyuk, Andrey , Rethmeier, Michael

In a repair process chain, damaged areas or cracks can be removed by milling and subsequently be reconditioned with new material deposition. The use of laser metal deposition has been investigated for this purpose. The material has been deposited into different groove shapes, using both stainless steel and Ti-6Al-4 V. The influence of welding parameters on the microstructure and the heat affected zone has been studied. The parameters have been modified in order to achieve low heat input and consequently low distortion as well as low metallurgical impact. Finally, an evaluation of the opportunities for an automatized repair process is made.

No Thumbnail Available
Publication

Laser metal deposition as repair technology for a gas turbine burner made of Inconel 718

2016 , Petrat, Torsten , Graf, Benjamin , Gumenyuk, Andrey , Rethmeier, Michael

Maintenance, repair and overhaul of components are of increasing interest for parts of high complexity and expensive manufacturing costs. In this paper a production process for laser metal deposition is presented, and used to repair a gas turbine burner of Inconel 718. Different parameters for defined track geometries were determined to attain a near net shape deposition with consistent build-up rate for changing wall thicknesses over the manufacturing process. Spot diameter, powder feed rate, welding velocity and laser power were changed as main parameters for a different track size. An optimal overlap rate for a constant layer height was used to calculate the best track size for a fitting layer width similar to the part dimension. Deviations in width and height over the whole build-up process were detected and customized build-up strategies for the 3D sequences were designed. The results show the possibility of a near net shape repair by using different track geometries with laser metal deposition.