Now showing 1 - 10 of 18
No Thumbnail Available
Publication

Transferability of ANN-generated parameter sets from welding tracks to 3D-geometries in Directed Energy Deposition

2022-11-04 , Marko, Angelina , Bähring, Stefan , Raute, Maximilian Julius , Biegler, Max , Rethmeier, Michael

Directed energy deposition (DED) has been in industrial use as a coating process for many years. Modern applications include the repair of existing components and additive manufacturing. The main advantages of DED are high deposition rates and low energy input. However, the process is influenced by a variety of parameters affecting the component quality. Artificial neural networks (ANNs) offer the possibility of mapping complex processes such as DED. They can serve as a tool for predicting optimal process parameters and quality characteristics. Previous research only refers to weld beads: a transferability to additively manufactured three-dimensional components has not been investigated. In the context of this work, an ANN is generated based on 86 weld beads. Quality categories (poor, medium, and good) are chosen as target variables to combine several quality features. The applicability of this categorization compared to conventional characteristics is discussed in detail. The ANN predicts the quality category of weld beads with an average accuracy of 81.5%. Two randomly generated parameter sets predicted as “good” by the network are then used to build tracks, coatings, walls, and cubes. It is shown that ANN trained with weld beads are suitable for complex parameter predictions in a limited way.

No Thumbnail Available
Publication

Analysis and recycling of bronze grinding waste to produce maritime components using directed energy deposition

2021 , Müller, Vinzenz , Marko, Angelina , Kruse, Tobias , Biegler, Max , Rethmeier, Michael

Additive manufacturing promises a high potential for the maritime sector. Directed Energy Deposition (DED) in particular offers the opportunity to produce large-volume maritime components like propeller hubs or blades without the need of a costly casting process. The post processing of such components usually generates a large amount of aluminum bronze grinding waste. The aim of the presented project is to develop a sustainable circular AM process chain for maritime components by recycling aluminum bronze grinding waste to be used as raw material to manufacture ship propellers with a laser-powder DED process. In the present paper, grinding waste is investigated using a dynamic image analysis system and compared to commercial DED powder. To be able to compare the material quality and to verify DED process parameters, semi-academic sample geometries are manufactured.

No Thumbnail Available
Publication

Laser Welding of SLM-Manufactured Tubes Made of IN625 and IN718

2019 , Jokisch, Torsten , Marko, Angelina , Gook, Sergej , Üstündag, Ömer , Gumenyuk, Andrey , Rethmeier, Michael

The advantage of selective laser melting (SLM) is its high accuracy and geometrical flexibility. Because the maximum size of the components is limited by the process chamber, possibilities must be found to combine several parts manufactured by SLM. An application where this is necessary, is, for example, the components of gas turbines, such as burners or oil return pipes, and inserts, which can be joined by circumferential welds. However, only a few investigations to date have been carried out for the welding of components produced by SLM. The object of this paper is, therefore, to investigate the feasibility of laser beam welding for joining SLM tube connections made of nickel-based alloys. For this purpose, SLM-manufactured Inconel 625 and Inconel 718 tubes were welded with a Yb:YAG disk laser and subsequently examined for residual stresses and defects. The results showed that the welds had no significant influence on the residual stresses. A good weld quality could be achieved in the seam circumference. However, pores and pore nests were found in the final overlap area, which meant that no continuous good welding quality could be accomplished. Pore formation was presumably caused by capillary instabilities when the laser power was ramped out.

No Thumbnail Available
Publication

Prognose der Oberflächenbeschaffenheit für die additive Fertigung mittels Laser-Pulver-Auftragschweißen

2018 , Marko, Angelina , Petrat, Torsten , Graf, Benjamin , Rethmeier, Michael

In den letzten Jahren hat vor allem die Nachfrage nach additiven Fertigungstechnologien und Reparaturverfahren für hochfeste Werkstoffe einen starken Aufschwung erlebt. Ein Verfahren, welches sich neben der Herstellung von Beschichtungen besonders für diese Anwendungen eignet, ist das Laser-Pulver-Auftragschweißen. Es wird besonders für Reparaturen bzw. zur Herstellung von teuren Bauteilen, wie Werkzeugen oder Turbinenteilen, eingesetzt. Da diese Teile oft großen mechanischen sowie thermischen Belastungen ausgesetzt sind, ist es besonders wichtig, dass die erzeugte Struktur eine hohe Qualität aufweist. In dieser Arbeit wird die statistische Versuchsplanung genutzt, um Modelle für die Oberflächenbeschaffenheiten von Inconel 718 zu generieren. Als Grundlage dient hierbei ein zentral zusammengesetzter Versuchsplan mit großem Parameterfenster. So wird die Leistung zwischen 550 Watt und 1950 Watt, der Vorschub von 530 mm/min bis 920 mm/min, der Pulvermassenstrom von 3 g/min bis 12 g/min sowie der Spotdurchmesser von 1 mm bis 2 mm variiert. Auf diese Weise wird die Spurgeometrie beeinflusst. Darüber hinaus wird das Überlappungsverhältnis zwischen 20% bis 50 % verändert. Die Auswertung der Oberflächenbeschaffenheit erfolgt mit dem auf der Fokusvariation basierendem Oberflächenmessgerät Alicona Infinite- Focus. Dieses Verfahren der 3D Mikrokoordinatenmesstechnik gewährleistet eine zuverlässige Auswertung der Spurgeometrie, der Welligkeit sowie die Messung der mittleren arithmetischen Höhe Sa zur Bestimmung der Oberflächenrauheit. Anschließend werden die generierten Modelle verifiziert. Ziel dabei ist es, kostenintensive Vorversuche in Zukunft einzusparen. Darüber hinaus wird das Prozessverständnis erweitert und signifikante Einflussfaktoren identifiziert.

No Thumbnail Available
Publication

Characterization of Ti-6Al-4V Fabricated by Multilayer Laser Powder-Based Directed Energy Deposition

2022 , Ávila Calderón, Luis Alexander , Graf, Benjamin , Rehmer, Birgit , Petrat, Torsten , Skrotzki, Birgit , Rethmeier, Michael

Laser powder-based directed energy deposition (DED-L) is increasingly being used in additive manufacturing (AM). As AM technology, DED-L must consider specific challenges. It must achieve uniform volume growth over hundreds of layers and avoid heat buildup of the deposited material. Herein, Ti-6Al-4V is fabricated using an approach that addresses these challenges and is relevant in terms of transferability to DED-L applications in AM. The assessment of the obtained properties and the discussion of their relationship to the process conditions and resulting microstructure are presented. The quality of the manufacturing process is proven in terms of the reproducibility of properties between individual blanks and with respect to the building height. The characterization demonstrates that excellent mechanical properties are achieved at room temperature and at 400 C.

No Thumbnail Available
Publication

Automated Tool-Path Generation for Rapid Manufacturing of Additive Manufacturing Directed Energy Deposition Geometries

2020 , Biegler, Max , Wang, Jiahan , Kaiser, Lukas , Rethmeier, Michael

In additive manufacturing (AM) directed energy deposition (DED), parts are built by welding layers of powder or wire feedstock onto a substrate with applications for steel powders in the fields of forging tools, spare parts, and structural components for various industries. For large and bulky parts, the choice of tool-paths influences the build rate, the mechanical performance, and the distortions in a highly geometry-dependent manner. With weld-path lengths in the range of hundreds of meters, a reliable, automated tool-path generation is essential for the usability of DED processes. This contribution presents automated tool-path generation approaches and discusses the results for arbitrary geometries. So-called “zig-zag” and “contour-parallel” processing strategies are investigated and the tool-paths are automatically formatted into machine-readable g-code for experimental validation to build sample geometries. The results are discussed in regard to volume-fill, microstructure, and porosity in dependence of the path planning according to photographs and metallographic cross-sections.

No Thumbnail Available
Publication

Heat treatment of SLM-LMD hybrid components

2019 , Uhlmann, Eckart , Düchting, Jan , Petrat, Torsten , Graf, Benjamin , Rethmeier, Michael

Additive manufacturing is no longer just used for the production of prototypes but already found its way into the industrial production. However, the fabrication of massive metallic parts with high geometrical complexity is still too time-consuming to be economically viable. The combination of the powder bed-based selective laser melting process (SLM), known for its geometrical freedom and accuracy, and the nozzle-based laser metal deposition process (LMD), known for its high build-up rates, has great potential to reduce the process duration. For the industrial application of the SLM-LMD hybrid process chain it is necessary to investigate the interaction of the processes and its effect on the material properties to guarantee part quality and prevent component failure. Therefore, hybrid components are manufactured and examined before and after the heat treatment regarding the microstructure and the hardness in the SLM-LMD transition zone. The experiments are conducted using the nickel-based alloy Inconel 718.

No Thumbnail Available
Publication

Laser beam welding of additive manufactured components: Applicability of existing valuation regulations

2022 , Jokisch, T. , Gook, Sergej , Marko, Angelina , Üstündağ, Ömer , Gumenyuk, A. , Rethmeier, Michael

With additive manufacturing in the powder bed, the component size is limited by the installation space. Joint welding of additively manufactured parts offers a possibility to remove this size limitation. However, due to the specific stress and microstructure state in the additively built material, it is unclear to what extent existing evaluation rules of joint welding are also suitable for welds on additive components. This is investigated using laser beam welding of additively manufactured pipe joints. The welds are evaluated by means of visual inspection, metallographic examinations as well as computed tomography. The types of defects found are comparable to conventional components. This is an indicator that existing evaluation regulations also map the possible defects occurring for weld seams on additive components.

No Thumbnail Available
Publication

Microstructure of Inconel 718 parts with constant mass energy input manufactured with direct energy deposition

2019 , Petrat, Torsten , Brunner-Schwer, Christian , Graf, Benjamin , Rethmeier, Michael

The laser-based direct energy deposition (DED) as a technology for additive manufacturing allows the production of near net shape components. Industrial applications require a stable process to ensure reproducible quality. Instabilities in the manufacturing process can lead to faulty components which do not meet the required properties. The DED process is adjusted by various parameters such as laser power, velocity, powder mass flow and spot diameter, which interact with each other. A frequently used comparative parameter in welding is the energy per unit length and is calculated from the laser power and the velocity in laser welding. The powder per unit length comparative parameter in the DED process has also be considered, because this filler material absorbs energy in addition to the base material. This paper deals with the influence of mass energy as a comparative parameter for determining the properties of additively manufactured parts. The same energy per unit length of 60 J/mm as well as the same powder per unit length of 7.2 mg/mm can be adjusted with different parameter sets. The energy per unit length and the powder per unit length determine the mass energy. The laser power is varied within the experiments between 400 W and 900 W. Energy per unit length and powder per unit length are kept constant by adjusting velocity and powder mass flow. Using the example of Inconel 718, experiments are carried out with the determined parameter sets. In a first step, individual tracks are produced and analyzed by means of micro section. The geometry of the tracks shows differences in height and width. In addition, the increasing laser power leads to a higher dilution of the base material. To determine the suitability of the parameters for additive manufacturing use, the individual tracks are used to build up parts with a square base area of 20×20 mm². An investigation by Archimedean principle shows a higher porosity with lower laser power. By further analysis of the micro sections, at low laser power, connection errors occur between the tracks. The results show that laser power, velocity and powder mass flow must be considered in particular, because a constant mass energy can lead to different geometric as well as microscopic properties.

No Thumbnail Available
Publication

Porosity of LMD manufactured parts analyzed by Archmimedes method and CT

2018 , Marko, Angelina , Raute, Julius , Linaschke, Dorit , Graf, Benjamin , Rethmeier, Michael

Pores in additive manufactured metal parts occur due to different reasons and affect the part quality negatively. Few investigations on the origins of porosity are available, especially for Ni-based super alloys. This paper presents a new study to examine the influence of common processing parameters on the formation of pores in parts built by laser metal deposition using Inconel 718 powder. Further, a comparison between the computed tomography (CT) and the Archimedes method was made. The investigation shows that CT is able to identify different kinds of pores and to give further information about their distribution. The identification of some pores as well as their shape can be dependent on the parameter setting of the analysis tool. Due to limited measurement resolution, CT is not able to identify correctly pores with diameters smaller than 0.1 mm, which leads to a false decrease in overall porosity. The applied Archimedes method is unable to differentiate between gas porosity and other kinds of holes like internal cracks or lack of fusion, but it delivered a proper value for overall porosity. The method was able to provide suitable data for the statistical evaluation with design of experiments, which revealed significant parameters on the formation of pores in LMD.