Now showing 1 - 2 of 2
  • Publication
    Effects on crack formation of additive manufactured Inconel 939 sheets during electron beam welding
    ( 2022)
    Raute, Julius
    ;
    Jokisch, Torsten
    ;
    ;
    The potential of additive manufacturing for processing precipitation hardened nickel-base superalloys, such as Inconel 939 is considerable, but in order to fully exploit this potential, fusion welding capabilities for additive parts need to be explored. Currently, it is uncertain how the different properties from the additive manufacturing process will affect the weldability of materials susceptible to hot cracking. Therefore, this work investigates the possibility of joining additively manufactured nickel-based superalloys using electron beam welding. In particular, the influence of process parameters on crack formation is investigated. In addition, hardness measurements are performed on cross-sections of the welds. It is shown that cracks at the seam head are enhanced by welding speed and energy per unit length and correlate with the hardness of the weld metal. Cracking parallel to the weld area shows no clear dependence on the process variables that have been investigated, but is related to the hardness of the heat-affected zone.
  • Publication
    Highspeed-plasma-laser-cladding of thin wear resistance coatings: A process approach as a hybrid metal deposition-technology
    ( 2019) ;
    Petrat, Torsten
    ;
    Graf, Benjamin
    ;
    Plasma-Transferred-Arc (PTA) welding is a process that enables high deposition rates, but also causes increased thermal load on the component. Laser metal deposition (LMD) welding, on the other hand, reaches a high level of precision and thus achieves comparatively low deposition rates, which can lead to high processing costs. Combining laser and arc energy aims to exploit the respective advantages of both technologies. In this study, a novel approach of this process combination is presented using a PTA system and a 2 kW disk laser. The energy sources are combined in a common process zone as a high-speed plasma laser cladding technology (HPLC), which achieves process speeds of 10 m/min at deposition rates of 6.6 kg/h and an energy per unit length of 39 J/mm.