Now showing 1 - 2 of 2
  • Publication
    Joining 30 mm Thick Shipbuilding Steel Plates EH36 Using a Process Combination of Hybrid Laser Arc Welding and Submerged Arc Welding
    This article presents a cost-effective and reliable method for welding 30 mm thick sheets of shipbuilding steel EH36. The method proposes to perform butt welding in a two-run technique using hybrid laser arc welding (HLAW) and submerged arc welding (SAW). The HLAW is performed as a partial penetration weld with a penetration depth of approximately 25 mm. The SAW is carried out as a second run on the opposite side. With a SAW penetration depth of 8 mm, the weld cross-section is closed with the reliable intersection of both passes. The advantages of the proposed welding method are: no need for forming of the HLAW root; the SAW pass can effectively eliminate pores in the HLAW root; the high stability of the welding process regarding the preparation quality of the weld edges. Plasma cut edges can be welded without lack of fusion defects. The weld quality achieved is confirmed by destructive tests.
  • Publication
    Hybrid laser arc welding of thick high-strength pipeline steels of grade X120 with adapted heat input
    The influence of heat input and welding speed on the microstructure and mechanical properties of single-pass hybrid laser arc welded 20 mm thick plates of high-strength pipeline steel X120 were presented. The heat input was varied in the range of 1.4 kJ mm-1 to 2.9 kJ mm-1, while the welding speed was changed between 0.5 m min-1 and 1.5 m min-1. A novel technique of bath support based on external oscillating electromagnetic field was used to compensate the hydrostatic pressure at low welding velocities. A major advantage of this technology is, that the welding speed and thus the cooling time t8/5 can be variated in a wide parameter window without issues regarding the weld root quality. The recommended welding thermal cycles for the pipeline steel X120 can be met by that way. All tested Charpy-V specimens meet the requirements of API 5 L regarding the impact energy. For higher heat inputs the average impact energy was 144 ± 37 J at a testing temperature of -40 °C. High heat input above 1.6 kJ mm-1 leads to softening in the weld metal and heat-affected-zone resulting in loss of strength. The minimum tensile strength of 915 MPa could be achieved at heat inputs between 1.4 kJ mm-1 and 1.6 kJ mm-1.