Now showing 1 - 1 of 1
  • Publication
    Increased efficiency and accuracy in ultra-precision machining through adapted CAM software
    CAM software is widely used through the last 40 years for a broad field of applications. The networkability of machine tools and the digitally integrated production as an existing trend for the next years and exponentially increasing computing power enable direct data transfer between CAD/CAM software and machine tool. Increments ar < 5 nm are common in ultra-precision CNC codes and are not supported by most traditional CAM software. Therefore, ultra-precision machining often remains a manufacturing process with high manual effort in the machine setting and the generation of CNC codes. In order to increase the degree of automation in ultra-precision machining, machine manufacturers are developing their own, customised CAM software. The studies presented in this paper investigate the influence of different process preparation on relevant parameters during ultra-precision face turning of an n surface with monocrystalline diamond tools. Machine-specific CAM software is com pared with manual CNC code creation from a point cloud. The influence on the workpiece characteristics dimensional accuracy GF and average roughness depth Ra is investigated. The influence of the chosen strategy for the generation of the CNC code on the machining time tm is examined to compare the economics of the strategies. In order to keep the comparison significant, the cutting parameters cutting depth ap and feed f are kept constant in all strategies. Decreasing machining time tm increases efficiency in comparison to manual CNC code creation.