Now showing 1 - 10 of 43
  • Publication
    Project-Based Learning in Engineering Education – Developing Digital Twins in a Case Study
    ( 2023)
    Hagedorn, Lisa
    ;
    ;
    Stark, Rainer
    The current engineering environment demands for an increasing level of interdisciplinarity, innovation, creativity and cross-domain thinking as well as the consideration of sustainability aspects. New concepts, such as Digital Twins and complex product systems lead to the need for integrated product development approaches and new methods that put the user perspective in focus. This also needs to be an integral part in today's teaching concepts of the next generation of engineers.At the Department of Industrial Information Technology of the Technical University of Berlin, a case study was conducted by applying a concept of project-based learning in the engineering domain to address these challenges. In this paper, the case study as well as the method and its validation are presented. Students from different engineering disciplines had the task of developing virtual and physical prototypes for a sustainable, complex product system with a digital twin and respective sustainable business models. Within a structured survey, the teaching concept and the applied method were validated and lessons learned as well as further improvement measures are derived.
  • Publication
    Taxonomy for Biological Transformation Principles in the Manufacturing Industry
    ( 2023)
    Berkhahn, Magda
    ;
    Kremer, Gerald
    ;
    ; ;
    Stark, Rainer
    Industry and research are seeking answers to current demands in industrial value creation, like resilience of production, sufficient product quality and sustainability of products and processes. A novel line of thought, seeking the accomplishment of those is the Biological Transformation (BT). BT describes the interweaving of biological modes of action, materials and organisms with engineering and information sciences. The conflation of disciplines from natural, technical and social sciences yields in a heterogeneous field of activities with ambiguous technical terms. An ascertainment of principles of BT is required to classify yet undifferentiated patterns in nature-based production, facilitating their systematic implementation in aiming for sustained solutions on current challenges. With increasing research in biomimetic, attempts arise to capture nature‑based activities in manufacturing through schematic classifications. Yet, basic semantics representing the effective principles of BT in the manufacturing industry is lacking. The goal of this publication is to introduce a taxonomy of Biological Transformation in manufacturing based on its core principles Bio Inspiration, Bio Integration and Bio Interaction. Within the research project BioFusion 4.0, the taxonomy was developed and applied to classify technology innovations. The paper presents the taxonomy, its development and application in use cases.
  • Publication
    Literature review of quality attributes for collaborative product development
    ( 2022)
    Randermann, Marcel
    ;
    ;
    Jochem, Roland
    ;
    Stark, Rainer
    In collaborative product development, diverse stakeholders are involved in distributed engineering activities. This situation makes it difficult to ensure, manage, and improve the quality across company boundaries. Therefore, this work determines the characteristics of collaborative engineering which have an influence on the quality of distributed product development. Several interoperability frameworks were analyzed in order to get insights into key areas for collaboration design. Furthermore, a systematic literature review provided the best practices for improvement efforts. The derived quality attributes were condensed and adapted to collaborative product development in the four key areas of organization and processes, data/artifacts, information technology systems and infrastructure, and social factors. This enables product developers to examine their collaborative engineering environment and to identify room for improvement and to enhance quality. A case example of an engineering change order shows a collaborative data flow process, in which the quality attributes may indicate improvement measures.
  • Publication
    Methodology for a reverse engineering process chain with focus on customized segmentation and iterative closest point algorithms
    ( 2022) ;
    Schröder, Robert
    ;
    Stark, Rainer
    One-off construction is characterized by a multiplicity of manual manufacturing processes whereby it is based on consistent use of digital models. Since the actual state of construction does not match the digital models without manually updating them, the authors propose a method to automatically detect deviations and reposition the model data according to reality. The first essential method is based on the ""Segmentation of Unorganized Points and Recognition of Simple Algebraic Surfaces"" presented by Vanco et al.. The second method is the customization of the iterative closest point (ICP) algorithm. The authors present the overall structure of the implemented software, based on open source and relate it to the general reverse engineering (RE) framework by Buonamici et al.. A highlight will be given on: the general architecture of the software prototype; a customized segmentation and clustering of unorganized points and recognition of simple algebraic surfaces; the deviation analysis with a customized iterative closest point (CICP) algorithm Especially in the field of one-off construction, characterized by small and medium companies, automated assessment of 3D scan data during the design process is still in its infancy. By using an open source environment progress for consistent use of digital models could be accelerated.
  • Publication
    Enabling automated engineering's project progress measurement by using data flow models and digital twins
    ( 2021)
    Ebel, Helena
    ;
    ;
    Stark, Rainer
    A significant challenge of managing successful engineering projects is to know their status at any time. This paper describes a concept of automated project progress measurement based on data flow models, digital twins, and machine learning (ML) algorithms. The approach integrates information from previous projects by considering historical data using ML algorithms and current unfinished artifacts to determine the degree of completion. The information required to measure the progress of engineering activities is extracted from engineering artifacts and subsequently analyzed and interpreted according to the project's progress. Data flow models of the engineering process help understand the context of the analyzed artifacts. The use of digital twins makes it possible to connect plan data with actual data during the completion of the engineering project.
  • Publication
    Validation of Immersive Design Parameters in Driving Simulation Environments
    ( 2021)
    Lyga, Yvonne
    ;
    Lau, Merle
    ;
    ;
    Stark, Rainer
    Driving simulators are used for the prospective validation of technical systems in the automotive sector. The design of simulation environments can affect drivers and should be considered in investigations of driver-vehicle interactions. The aim of this research is to minimize the gap between driving simulators and real car studies by integrating immersive parameters into simulated driving environments. Stereoscopy, surround sound and motion feedback were analyzed with regard to driver behavior and experience and were then compared to data of a real drive from a previous investigation. The authors conducted a study with N = 48 participants performing a dual-task scenario in a driving simulator. Results reveal significant effects of immersive design parameters on gaze behavior and mental workload. Findings provide guidance for an efficient and cost-effective development of driving simulation environments.
  • Publication
    Conceptual Introduction of required development capabilities for Model-Based Systems Engineering
    ( 2021)
    Manoury, Marvin Michael
    ;
    ;
    Zimmermann, Thomas C.
    ;
    Stark, Rainer
    In the last years, multiple tools and methodologies have emerged that try to support the engineers to conduct Model Based Systems Engineering (MBSE). Nevertheless, the tools are usually bound to a certain methodology, which often requires sequential steps instead of supporting the iterative character of modern product development. In this paper, we conceptually introduce the development capabilities of the 5D model for MBSE as a convenient way to cover all relevant aspects of MBSE in an iterative way while being open to methodology and tool choice.
  • Publication
    Systematic Literature Review of System Models for Technical System Development
    ( 2021)
    Manoury, Marvin Michael
    ;
    Zimmermann, Thomas
    ;
    Stark, Rainer
    In Model-Based Systems Engineering (MBSE) there is yet no converged terminology. The term 'system model' is used in different contexts in literature. In this study we elaborated the definitions and usages of the term 'system model', to find a common definition. We analyzed 104 publications in depth for their usage and definition as well as their meta-data e.g., the publication year and publication background to find some common patterns. While the term is gaining more interest in recent years, it is used in a broad range of contexts for both analytical and synthetic use cases. Based on this, three categories of system models have been defined and integrated into a more precise definition.
  • Publication
    How Pedestrians Perceive Autonomous Buses: Evaluating Visual Signals
    ( 2021) ;
    Kozachek, Diana
    ;
    Konkol, Kathrin
    ;
    Woelfel, Christiane
    ;
    ;
    Stark, Rainer
    With the deployment of autonomous buses, sophisticated technological systems are entering our daily lives and their signals are becoming a crucial factor in human-machine interaction. The successful implementation of visual signals requires a well-researched human-centred design as a key component for the new transportation system. The autonomous vehicle we investigated in this study uses a variety of these: Icons, LED panels and text. We conducted a user study with 45 participants in a virtual reality environment in which four recurring communication scenarios between an autonomous driving bus and its potential passengers had to be correctly interpreted. For our four scenarios, efficiency and comprehension of each visual signal combination was measured to evaluate performance on different types of visual information. The results show that new visualization concepts such as LED panels lead to highly variable efficiency and comprehension, while text or icons were well ac cepted. In summary, the authors of this paper present the most efficient combinations of visual signals for four reality scenarios.
  • Publication
    Knowledge transfer and engineering methods for smart-circular product service systems
    ( 2021)
    Halstenberg, Friedrich
    ;
    Dönmez, Jasmin
    ;
    Mennenga, Mark
    ;
    Herrmann, Christoph
    ;
    Stark, Rainer
    Smart Product Service Systems (Smart PSS) have the potential to contribute to a Circular Economy (CE), but in the design of these systems engineering teams often lack information and knowledge on CE strategies and processes. Against this background, the authors propose a knowledge transfer system for the design of Smart-circular PSS. The system can be used in the concept phase of the Smart PSS development process and delivers information on CE strategies via a Smart-circular PSS Lifecycle Flowchart (SCPLF) and service archetypes. These strategies can be selected, supplemented and extended according to individual user requirements. The approach was validated using an intelligent street lighting system. This paper summarizes findings from the application and provides insights into potentials and limitations for the design of Smart-circular Smart PSS.