Now showing 1 - 5 of 5
No Thumbnail Available
Publication

The Identification of a New Liquid Metal Embrittlement (LME) Type in Resistance Spot Welding of Advanced High-Strength Steels on Reduced Flange Widths

2023-10-16 , Yang, Keke , Meschut, Gerson , Seitz, Georg , Biegler, Max , Rethmeier, Michael

Liquid metal embrittlement (LME) cracking is a phenomenon observed during resistance spot welding (RSW) of zinc-coated advanced high-strength steels (AHSS) in automotive manufacturing. In this study, severe cracks are observed at the edge of the sheet under reduced flange widths. These cracks, traversing the AHSS sheet, culminate at the edge with a width of approximately 1.2 mm. Through combined numerical and experimental investigations, and material testing, these cracks are identified and validated as a new type of LME crack. The mechanism behind this crack formation is attributed to unique geometric conditions that, when compared to center welding, amplify radial material flow by ninefold to 0.87 mm. The resultant tangential tensile stresses approximate 760 MPa, which exceed the yield strength of the examined advanced high-strength steel (AHSS) under heightened temperature conditions, and when combined with liquid zinc, promote the formation of this new type of LME crack.

No Thumbnail Available
Publication

Prevention of liquid metal embrittlement cracks in resistance spot welds by adaption of electrode geometry

2020 , Böhne, Christoph , Meschut, Gerson , Biegler, Max , Frei, Julian , Rethmeier, Michael

Advanced high strength steels are usually coated by a zinc layer for an increased resistance against corrosion. During the resistance spot welding of zinc coated steel grades, liquid metal embrittlement (LME) may occur. As a result, cracking inside and around the spot weld indentation is observable. The extent of LME cracks is influenced by a variety of different factors. In this study, the impact of the used electrode geometry is investigated over a stepwise varied weld time. A spot welding finite element simulation is used to analyse and explain the observed effects. Results show significant differences especially for highly increased weld times. Based on identical overall dimensions, electrode geometries with a larger working plane allow for longer weld times, while still preventing LME within the investigated material and maintaining accessibility.

No Thumbnail Available
Publication

On Welding of High-Strength Steels Using Laser Beam Welding and Resistance Spot Weld Bonding with Emphasis on Seam Leak Tightness

2023 , Schmolke, Tobias , Brunner-Schwer, Christian , Biegler, Max , Rethmeier, Michael , Meschut, Gerson

The design of most electric vehicles provides for the positioning of the heavy energy storage units in the underbody of the cars. In addition to crash safety, the battery housing has to meet high requirements for gas tightness. In order to test the use of high-strength steels for this sub-assembly, this paper examines welded joints utilizing resistance spot weld bonding and laser remote welding, with special regard to the gas tightness of the welds. For this purpose, the pressure difference test and helium sniffer leak detection are presented and applied. The combination of both leak test methods has proven ideal in experimental investigations. For laser remote welding, gas-tight seams can be achieved with an inter-sheet gap of 0.1 mm, even if occasionally leaking samples cannot be prevented. Resistance spot welding suits gas-tight joining with both one- and two-component adhesives. Against the background of leak tightness, process fluctuations that lead to weld spatter and defects in the adhesive layer must be prevented with high priority.

No Thumbnail Available
Publication

Investigation of liquid metal embrittlement of dual phase steel joints by electro-thermomechanical spot-welding simulation

2019 , Frei, Julian , Biegler, Max , Rethmeier, Michael , Böhne, Christoph , Meschut, Gerson

A 3D electro-thermomechanical model is established in order to investigate liquid metal embrittlement. After calibration to a dual phase steel of the 1000 MPa tensile strength class, it is used to analyse the thermo-mechanical system of an experimental procedure to enforce liquid metal embrittlement during resistance spot welding. In this procedure, a tensile stress level is applied to zinc coated advanced high strength steel samples during welding. Thereby, liquid metal embrittlement formation is enforced, depending on the applied stress level and the selected material. The model is suitable to determine and visualise the corresponding underlying stresses and strains responsible for the occurrence of liquid metal embrittlement. Simulated local stresses and strains show good conformity with experimentally observed surface crack locations.

No Thumbnail Available
Publication

The Influence of Electrode Indentation Rate on LME Formation during RSW

2022 , Böhne, Christoph , Meschut, Gerson , Biegler, Max , Rethmeier, Michael

During resistance spot welding of zinc-coated advanced high-strength steels (AHSSs) for automotive production, liquid metal embrittlement (LME) cracking may occur in the event of a combination of various unfavorable influences. In this study, the interactions of different welding current levels and weld times on the tendency for LME cracking in third-generation AHSSs were investigated. LME manifested itself as highpenetration cracks around the circumference of the spot welds for welding currents closely below the expulsion limit. At the same time, the observed tendency for LME cracking showed no direct correlation with the overall heat input of the investigated welding processes. To identify a reliable indicator of the tendency for LME cracking, the local strain rate at the origin of the observed cracks was analyzed over the course of the welding process via finite element simulation. While the local strain rate showed a good correlation with the process-specific LME cracking tendency, it was difficult to interpret due to its discontinuous course. Therefore, based on the experimental measurement of electrode displacement during welding, electrode indentation velocity was proposed as a descriptive indicator for quantifying cracking tendency.