Now showing 1 - 1 of 1
  • Publication
    Visualizing trajectories for industrial robots from sampling-based path planning on mobile devices
    ( 2018)
    Guhl, Jan
    ;
    ;
    Vonasek, Vojtech
    ;
    Production lines are nowadays transforming into flexible modular and interconnected cells to react to rapidly changing product demands. The arrangement of the workspace inside the modular cells will vary according to the actual product being developed. Tasks like motion planning will not be possible to precompute. Instead, it has to be solved on demand. Planning the trajectories for the industrial robots with respect to changing obstacles and other varying environment parameters is hard to solve with classical path planning approaches. A possible solution is to employ sampling-based planning techniques. In this paper we present a distributed sampling-based path planner and an augmented reality visualization approach for verification of trajectories. Combining the technologies ensures a confirmed continuation of the production process under new conditions. Using parallel and distributed path planning speeds up the planning phase significantly and comparing different mobile devices for augmented reality representation of planned trajectories reveals a clear advantage for hands-free HoloLens. The results are demonstrated in several experiments in laboratory scale.