Now showing 1 - 3 of 3
  • Publication
    Microstructure of Inconel 718 parts with constant mass energy input manufactured with direct energy deposition
    ( 2019)
    Petrat, Torsten
    ;
    ;
    Graf, Benjamin
    ;
    The laser-based direct energy deposition (DED) as a technology for additive manufacturing allows the production of near net shape components. Industrial applications require a stable process to ensure reproducible quality. Instabilities in the manufacturing process can lead to faulty components which do not meet the required properties. The DED process is adjusted by various parameters such as laser power, velocity, powder mass flow and spot diameter, which interact with each other. A frequently used comparative parameter in welding is the energy per unit length and is calculated from the laser power and the velocity in laser welding. The powder per unit length comparative parameter in the DED process has also be considered, because this filler material absorbs energy in addition to the base material. This paper deals with the influence of mass energy as a comparative parameter for determining the properties of additively manufactured parts. The same energy per unit length of 60 J/mm as well as the same powder per unit length of 7.2 mg/mm can be adjusted with different parameter sets. The energy per unit length and the powder per unit length determine the mass energy. The laser power is varied within the experiments between 400 W and 900 W. Energy per unit length and powder per unit length are kept constant by adjusting velocity and powder mass flow. Using the example of Inconel 718, experiments are carried out with the determined parameter sets. In a first step, individual tracks are produced and analyzed by means of micro section. The geometry of the tracks shows differences in height and width. In addition, the increasing laser power leads to a higher dilution of the base material. To determine the suitability of the parameters for additive manufacturing use, the individual tracks are used to build up parts with a square base area of 20×20 mm². An investigation by Archimedean principle shows a higher porosity with lower laser power. By further analysis of the micro sections, at low laser power, connection errors occur between the tracks. The results show that laser power, velocity and powder mass flow must be considered in particular, because a constant mass energy can lead to different geometric as well as microscopic properties.
  • Publication
    Design of experiments for laser metal deposition in maintenance, repair and overhaul applications
    ( 2013)
    Graf, Benjamin
    ;
    Ammer, Stefan
    ;
    ;
    Modern and expensive parts lead to an increasing demand for maintenance, repair and overhaul (MRO) technologies. Instead of part replacement, MRO technologies are economically advantageous throughout the life cycle. Laser metal deposition as modern MRO technology can be used to repair cracks or protect damaged surfaces with a hard facing layer. It is necessary to adjust weld bead profile to the specific task. For this purpose, Design of Experiment (DoE) has a high potential to decrease experimental effort. In this paper, a full factorial design is used to determine the effect of process parameters on the geometric dimensions of the weld bead. The paper is of interest to engineers working with laser metal deposition as well as DoE methods.
  • Publication
    Laser metal deposition as repair technology for stainless steel and titanium alloys
    ( 2012)
    Graf, Benjamin
    ;
    ;
    In a repair process chain, damaged areas or cracks can be removed by milling and subsequently be reconditioned with new material deposition. The use of laser metal deposition has been investigated for this purpose. The material has been deposited into different groove shapes, using both stainless steel and Ti-6Al-4 V. The influence of welding parameters on the microstructure and the heat affected zone has been studied. The parameters have been modified in order to achieve low heat input and consequently low distortion as well as low metallurgical impact. Finally, an evaluation of the opportunities for an automatized repair process is made.