Now showing 1 - 5 of 5
  • Publication
    Combined laser additive manufacturing for complex turbine blades
    Laser beam processes are increasingly used in the field of additive manufacturing. Prominent methods are either powderbed-based like Laser Metal Fusion (LMF), or utilizing a powder nozzle like Laser Metal Deposition (LMD). While LMF allows the manufacturing of complex structures, build rate, part volumes and material flexibility are limited. In contrast, LMD is able to operate with high deposition rates on existing parts, and materials can be changed easily during the process. However LMD shape complexity is limited. Utilizing their respective strengths, a combination of these two additive technologies has the potential to produce complex parts with high deposition rates and increased material flexibility. In this paper, combined manufacturing with additive technologies LMF and LMD is described. Its benefit for industry with emphasis on turbomachinery is shown. As reality test for the innovation, an industrial turbine blade is manufactured.
  • Publication
    Design of experiments for laser metal deposition in maintenance, repair and overhaul applications
    ( 2013)
    Graf, Benjamin
    ;
    Ammer, Stefan
    ;
    ;
    Modern and expensive parts lead to an increasing demand for maintenance, repair and overhaul (MRO) technologies. Instead of part replacement, MRO technologies are economically advantageous throughout the life cycle. Laser metal deposition as modern MRO technology can be used to repair cracks or protect damaged surfaces with a hard facing layer. It is necessary to adjust weld bead profile to the specific task. For this purpose, Design of Experiment (DoE) has a high potential to decrease experimental effort. In this paper, a full factorial design is used to determine the effect of process parameters on the geometric dimensions of the weld bead. The paper is of interest to engineers working with laser metal deposition as well as DoE methods.
  • Publication
    Laser metal deposition as repair technology for stainless steel and titanium alloys
    ( 2012)
    Graf, Benjamin
    ;
    ;
    In a repair process chain, damaged areas or cracks can be removed by milling and subsequently be reconditioned with new material deposition. The use of laser metal deposition has been investigated for this purpose. The material has been deposited into different groove shapes, using both stainless steel and Ti-6Al-4 V. The influence of welding parameters on the microstructure and the heat affected zone has been studied. The parameters have been modified in order to achieve low heat input and consequently low distortion as well as low metallurgical impact. Finally, an evaluation of the opportunities for an automatized repair process is made.