Now showing 1 - 1 of 1
  • Publication
    Die-sinking EDM of a SiC-boride-composite
    ( 2019)
    Uhlmann, E.
    ;
    Polte, J.
    ;
    Jahnke, C.
    ;
    Wolf, C.-S.
    ;
    Degenhardt, U.
    Silicon carbide-based composites are highly demanded for industrial applications, like heat exchangers in corrosive environments. In consequence of the mechanical properties like high hardness H and brittleness, cutting processes are still challenging. An opportunity for processing difficult-to-cut materials with sufficient electrical conductivity s is electrical discharge machining (EDM). In order to develop suitable machining technologies, known parameters for common material combinations can serve as a starting point. Hence, standard technologies from the database of a commercial die-sinking EDM machine tool were applied for machining a silicon carbide-boride-composite. The material removal rate QW and the arithmetical mean deviation Ra for finishing and roughing operations are observed. The formation of cracks and the extend of the typical deposition layer formed at the surface of the workpiece is analysed through scanning electron microscopy. While the material removal rate QW is increasing with higher discharge energies W in this investigation, the arithmetical mean deviation Ra is not dependent on this property. Furthermore, spalling is identified as main material removal mechanism occurring in this process. Overall, the machinability of silicon carbide-boride composites with EDM, applying commercial available parameter technologies, is successfully demonstrated.