Now showing 1 - 2 of 2
  • Publication
    In situ experiments with synchrotron high-energy x-rays and neutrons
    ( 2011)
    Staron, P.
    ;
    Fischer, T.
    ;
    Lippmann, T.
    ;
    Stark, A.
    ;
    Daneshpour, S.
    ;
    Schnubel, D.
    ;
    Uhlmann, E.
    ;
    Gerstenberger, R.
    ;
    Camin, B.
    ;
    Reimers, W.
    ;
    Eidenberger, E.
    ;
    Clemens, H.
    ;
    Huber, N.
    ;
    Schreyer, A.
    High-energy X-rays offer the large penetration depths that are often required for determination of bulk properties in engineering materials research. Photon energies of 150 keV and more are available at synchrotron sources, depending on storage ring and insertion device. In addition, synchrotron sources can offer very high intensities on the sample even at these energies. They can be used not only to obtain high spatial resolution using very small beams, but also high time resolution in combination with a fast detector. This opens up possibilities for a wide range of in situ experiments. Typical examples that are already widely used are heating or tensile testing in the beam. However, there are also more challenging in situ experiments in the field of engineering materials research like e.g. dilatometry, differential scanning calorimetry, or cutting. Nevertheless, there are a number of applications where neutron techniques are still favorable and both probes, photons and neutrons, should be regarded as complementary. A number of in situ experiments were realized at the GKSS synchrotron and neutron beamlines and selected examples are presented in the following.
  • Publication
    In situ strain measurement in the chip formation zone during orthogonal cutting
    ( 2011)
    Uhlmann, E.
    ;
    Gerstenberger, R.
    ;
    Herter, S.
    ;
    Hoghé, T.
    ;
    Reimers, W.
    ;
    Camin, B.
    ;
    Martins, R.V.
    ;
    Schreyer, A.
    ;
    Fischer, T.
    The strain and stress state in the chip formation zone determines the chip formation. However, it is difficult to obtain experimental data about the strain/stress fields during machining. For this reason, present chip formation models highly simplify the chip formation process. In order to extend the knowledge regarding the chip formation mechanisms, an experimental method for the in situ measurement of the elastic deformations within the chip formation zone during the cutting process has been developed. Using these deformations, the stress state can subsequently be calculated. The method is based on X-ray diffraction using high-energy synchrotron X-radiation during machining the workpiece in an orthogonal cutting process under quasistatic experimental conditions. The diffraction patterns are captured with a 2D detector. A comparison of the experimentally determined stresses at different measuring positions within the chip formation zone with results from a FEM cutting simulation shows a good qualitative and partially also quantitative consistency. Possibilities for the further performance increase of the method are identified so that the method can be used for the verification and extension of existing chip formation models in future.