Now showing 1 - 2 of 2
  • Publication
    Taxonomy for Biological Transformation Principles in the Manufacturing Industry
    ( 2023)
    Berkhahn, Magda
    ;
    Kremer, Gerald
    ;
    ; ;
    Stark, Rainer
    Industry and research are seeking answers to current demands in industrial value creation, like resilience of production, sufficient product quality and sustainability of products and processes. A novel line of thought, seeking the accomplishment of those is the Biological Transformation (BT). BT describes the interweaving of biological modes of action, materials and organisms with engineering and information sciences. The conflation of disciplines from natural, technical and social sciences yields in a heterogeneous field of activities with ambiguous technical terms. An ascertainment of principles of BT is required to classify yet undifferentiated patterns in nature-based production, facilitating their systematic implementation in aiming for sustained solutions on current challenges. With increasing research in biomimetic, attempts arise to capture nature‑based activities in manufacturing through schematic classifications. Yet, basic semantics representing the effective principles of BT in the manufacturing industry is lacking. The goal of this publication is to introduce a taxonomy of Biological Transformation in manufacturing based on its core principles Bio Inspiration, Bio Integration and Bio Interaction. Within the research project BioFusion 4.0, the taxonomy was developed and applied to classify technology innovations. The paper presents the taxonomy, its development and application in use cases.
  • Publication
    Feedback to Design with Digital Lifecycle-Twins - literature review and concept presentation
    ( 2018) ; ;
    Stark, Rainer
    In this paper, the authors propose a concept for optimizing the design process as well as product-related features and services through learning from Digital Twin data and establishing a continuous feedback loop from downstream phases of the product lifecycle to the design phase. As a first step, a systematic review of existing concepts in literature as well as a gap analysis is conducted. The presented concept details existing Digital Twin concepts and implementations by focusing on the specific objective of realizing Feedback to Design and integrating the lifecycle aspect.