Now showing 1 - 2 of 2
No Thumbnail Available
Publication

A life cycle assessment of joining processes in the automotive industry, illustrated by the example of an EV battery case

2023 , Brunner-Schwer, Christian , Lemke, Josefine , Biegler, Max , Schmolke, Tobias , Spohr, Sebastian , Meschut, Gerson , Eckstein, Lutz , Rethmeier, Michael

Current ecological, economic and social changes are leading to a change in development, design and production of future vehicles. In this context, it is the stated goal of many manufacturers to advance the development of an environmentally friendly vehicle and climate-neutral production throughout the entire supply chain. This study presents a comparative life cycle assessment of the joining processes laser beam welding, laser brazing and resistance spot welding. For this purpose, an approach tailored to welding processes is presented and applied to the example of a battery case for electric vehicles. For the welding process under consideration, the main influences on the resulting environmental impact categories are evaluated and compared. The requirements for ecologically efficient welding processes are discussed and outlined. The results show that particularly the materials involved, such as the consumption of the filler material, have the greatest environmental impact and thus offer the greatest potential for savings.

No Thumbnail Available
Publication

On Welding of High-Strength Steels Using Laser Beam Welding and Resistance Spot Weld Bonding with Emphasis on Seam Leak Tightness

2023 , Schmolke, Tobias , Brunner-Schwer, Christian , Biegler, Max , Rethmeier, Michael , Meschut, Gerson

The design of most electric vehicles provides for the positioning of the heavy energy storage units in the underbody of the cars. In addition to crash safety, the battery housing has to meet high requirements for gas tightness. In order to test the use of high-strength steels for this sub-assembly, this paper examines welded joints utilizing resistance spot weld bonding and laser remote welding, with special regard to the gas tightness of the welds. For this purpose, the pressure difference test and helium sniffer leak detection are presented and applied. The combination of both leak test methods has proven ideal in experimental investigations. For laser remote welding, gas-tight seams can be achieved with an inter-sheet gap of 0.1 mm, even if occasionally leaking samples cannot be prevented. Resistance spot welding suits gas-tight joining with both one- and two-component adhesives. Against the background of leak tightness, process fluctuations that lead to weld spatter and defects in the adhesive layer must be prevented with high priority.