Now showing 1 - 3 of 3
  • Publication
    Prevention of liquid metal embrittlement cracks in resistance spot welds by adaption of electrode geometry
    ( 2020)
    Böhne, Christoph
    ;
    Meschut, Gerson
    ;
    ;
    Frei, Julian
    ;
    Advanced high strength steels are usually coated by a zinc layer for an increased resistance against corrosion. During the resistance spot welding of zinc coated steel grades, liquid metal embrittlement (LME) may occur. As a result, cracking inside and around the spot weld indentation is observable. The extent of LME cracks is influenced by a variety of different factors. In this study, the impact of the used electrode geometry is investigated over a stepwise varied weld time. A spot welding finite element simulation is used to analyse and explain the observed effects. Results show significant differences especially for highly increased weld times. Based on identical overall dimensions, electrode geometries with a larger working plane allow for longer weld times, while still preventing LME within the investigated material and maintaining accessibility.
  • Publication
    Investigation of liquid metal embrittlement of dual phase steel joints by electro-thermomechanical spot-welding simulation
    ( 2019)
    Frei, Julian
    ;
    ; ;
    Böhne, Christoph
    ;
    Meschut, Gerson
    A 3D electro-thermomechanical model is established in order to investigate liquid metal embrittlement. After calibration to a dual phase steel of the 1000 MPa tensile strength class, it is used to analyse the thermo-mechanical system of an experimental procedure to enforce liquid metal embrittlement during resistance spot welding. In this procedure, a tensile stress level is applied to zinc coated advanced high strength steel samples during welding. Thereby, liquid metal embrittlement formation is enforced, depending on the applied stress level and the selected material. The model is suitable to determine and visualise the corresponding underlying stresses and strains responsible for the occurrence of liquid metal embrittlement. Simulated local stresses and strains show good conformity with experimentally observed surface crack locations.
  • Publication
    Resistance spot welding under external load for evaluation of LME susceptibility of zinc coated advanced high strength steel sheets
    ( 2019)
    Frei, Julian
    ;
    ;
    Some zinc coated advanced high strength steels (AHSS), under certain manufacturing conditions, are known to be prone to liquid metal embrittlement (LME) during resistance spot welding. LME is an undesired phenomenon, which can cause both surface and internal cracks in a spot weld, potentially influencing its strength. An effort is made to understand influencing factors of LME better, and evaluate geometry-material combinations regarding their LME susceptibility. Manufacturers benefit from such knowledge because it improves the processing security of the materials. The experimental procedure of welding under external load is performed with samples of multiple AHSS classes with strengths up to 1200 MPa, including dual phase, complex phase and TRIP steels. This way, externally applied tensile load values are determined, which cause liquid metal embrittlement in the samples to occur. In the future, finite element simulation of this procedure gives access to in-situ stress and strain values present during LME formation. The visualization improves the process understanding, while a quantification of local stresses and strains allows an assessment of specific welded geometrie