Now showing 1 - 3 of 3
No Thumbnail Available
Publication

AI-based welding process monitoring for quality control in large-diameter pipe manufacturing

2024-04-25 , Gook, Sergej , El-Sari, Bassel , Biegler, Max , Rethmeier, Michael

The paper presents the experimental results into the development of a multi-channel system for monitoring and quality assurance of the multi-wire submerged arc welding (SAW) process for the manufacture of large diameter pipes. Process signals such as welding current, arc voltage and the acoustic signal emitted from the weld zone are recorded and processed to provide information on the stability of the welding process. It was shown by the experiments that the acoustic pattern of the SAW process in a frequency range between 30 Hz and 2.5 kHz contains the most diagnostic information. In the spectrogram of the acoustic signal, which represents the time course of the frequency spectrum of the welding process, the formation of weld irregularities such as undercuts could be reliably identified. The on-line quality assessment of the weld seam produced is carried out in combination with methods of artificial intelligence (AI). From the results obtained, it can be concluded that the use of the latest concepts in welding and automation technology, combined with the high potential of AI, can achieve a new level of quality assurance in pipe manufacturing.

No Thumbnail Available
Publication

Multiple-Wire Submerged Arc Welding of High-Strength Fine-Grained Steels

2022 , Gook, S. , El-Sari, Bassel , Biegler, Max , Rethmeier, Michael , Lichtenthäler, F. , Stark, M.

Ensuring the required mechanical-technological properties of welds is a critical issue in the application of multi-wire submerged arc welding process for welding high-strength fine-grained steels. Excessive heat input is one of the main causes for microstructural zones with deteriorated mechanical properties of the welded joint, such as a reduced notched impact strength and a lower structural robustness. A process variant is proposed which reduces the weld volume as well as the heat input by adjusting the welding wire configuration as well as the energetic parameters of the arcs, while retaining the advantages of multi-wire submerged arc welding such as high process stability and production speed.

No Thumbnail Available
Publication

Багатодротове дугове зварювання високоміцних дрібнозернистих сталей під флюсом

2022 , Gook, Sergej , El-Sari, Bassel , Biegler, Max , Rethmeier, Michael , Lichtenthäler, F. , Stark, M.

Ensuring the required mechanical-technological properties of welds is a critical issue in the application of multi-wire submerged arc welding process for welding high-strength fine-grained steels. Excessive heat input is one of the main causes for microstructural zones with deteriorated mechanical properties of the welded joint, such as a reduced notched impact strength and a lower structural robustness. A process variant is proposed which reduces the weld volume as well as the heat input by adjusting the welding wire configuration as well as the energetic parameters of the arcs, while retaining the advantages of multi-wire submerged arc welding such as high process stability and production speed