Now showing 1 - 3 of 3
  • Publication
    Residual stress assessment during cutting tool lifetime of CVD-diamond coated indexable inserts
    ( 2022)
    Uhlmann, E.
    ;
    Hinzmann, Daniel
    Insufficient coating adhesion limits reproducibility regarding tool lifetime as well as workpiece quality during the application of CVD-diamond coated cutting tools. Depending on the combination of tungsten carbide substrate material, coating thickness as well as coating morphology, individual residual stress conditions exist within CVD-diamond coated cutting tool specifications. The application of these tools is accompanied by coating delamination as primary cutting tool failure. The tool lifetime of the respective cutting tool composition depends on the corresponding residual stress condition until crack development within the CVD-diamond coating initiates tool failure. During external cylindrical turning of hypereutectic aluminium silicon alloy AlSi17Cu4Mg-T6 the residual stress condition of a CVD-diamond coated cutting tool is assessed along the cutting edge, the rake face as well as flank face throughout the respective tool lifetime. Consequently, the progression of the residual stress condition until cutting tool failure regarding coating delamination is observed. During the tool lifetime of the investigated CVD-diamond cutting tools, compressive residual stress ∆σR,c shifts to tensile residual stress ∆σR,t underneath the cutting edge corner. The approximated residual stress difference of ∆σR ≈ 5 GPa indicates stress peak relaxation processes, such as crack initiation, within the CVD-diamond coating.
  • Publication
    Ex Situ Residual Stress Analysis of Chemical Vapor Deposited Diamond Coated Cutting Tools by Synchrotron X-Ray Diffraction in Transmission Geometry
    ( 2021)
    Hinzmann, Daniel
    ;
    Böttcher, Katrin
    ;
    Reimers, Walter
    ;
    When machining difficult-to-cut, nonferrous materials, chemical vapor deposited (CVD) diamond-coated cutting tools are applied. The tools' favorable mechanical property profile is based on the hardness of the coating as well as the adaptability of the substrate. Nevertheless, the reproducibility of machining results and process stability are limited by insufficient coating adhesion. The resulting cutting tool failure is based on coating delamination initiated by crack development. By assessing residual stress as an influence of coating adhesion, an analysis of CVD diamond-coated tools is performed using synchrotron X-ray diffraction in transmission geometry. Investigation of a nanocrystalline and multilayer morphology on cobalt-based tungsten carbide (WC-Co) and a silicon nitride-based ceramic (Si3N4) provides the distribution of the principal in-plane residual stress tensor component s22 depending on the coating morphology and substrate material. Contrary to microcrystalline CVD diamond, nanocrystalline layers decrease the compressive residual stress. In addition, the CVD diamond coating deposited on the Si3N4 substrate material tends to induce an overall initial tensile residual stress that leads to increased tool performance compared to WC-Co-based coated tools. Variation of the coating morphology as well as the substrate material offers the possibility to extend the current model for residual stress-dependent tool failure.
  • Publication
    Wear evaluation of CVD diamond coated high-performance drilling tools for machining of carbon fiber reinforced plastics (CFRP)
    ( 2020) ;
    Reimers, Walter
    ;
    Hinzmann, Daniel
    ;
    Christiansen, Gerret
    ;
    Böttcher, Katrin
    The application of carbon fiber reinforced plastics (CFRP) as lightweight construction material in aerospace industry is based on the favorable weight-to-strength ratio. But the inherent material properties pose great challenges for the tool-as well as the manufacturing industry. In terms of economic industrial production processes, the quality of machined workpieces exhibits poor reproducibility combined with high tool wear. For this purpose, high-performance drilling tools with different CVD diamond coatings and carbide substrates with varying binder content were tested and analyzed in order to assess coating adhesion and workpiece quality. Due to a reduction of cobalt binder within the tungsten carbide-based tool substrates, an increase of tool performance regarding borehole quantity until coating delamination is demonstrated. While the reduction of tool wear on the rake face of the drilling tools can be correlated with the cutting tool performance, the online monitoring of cutting forces does not explicitly identify damaged cutting tools during machining.