Now showing 1 - 1 of 1
  • Publication
    Residual stresses in additive manufactured precision cemented carbide parts
    ( 2022) ; ;
    Hocke, T.
    ;
    Blankenburg, Malte
    ;
    Lahoda, Christian
    ;
    Due to the good strength properties and high hardness, components made of cemented carbide are used in various industrial sectors as key components, e.g. mould making and matrices. Precision cemented carbide parts are mainly machined by milling and electrical discharge machining (EDM). Nevertheless, long machining times and excessive tool wear are remaining challenges at the state of the art. A promising approach to overcome these challenges is the machining of precise cemented carbide parts using a process chain consisting of near-net-shape laser powder bed fusion (LPBF) and subsequent finishing using a dedicate diamond slide burnishing process. Within previous investigations a geometrical accuracy of ag ≤ 10 µm and a reduction of the surface roughness by Ra = 89 % could be achieved. Within this work plastic deformation induced by the diamond slide burnishing and the effects on the material properties in the surface area were investigated, e.g. residual stresses. For this purpose, the lattice distortion of the metallic cobalt phase was measured by X-ray diffraction using high-energy synchrotron radiation. In addition, the height profile of the residual stresses was also recorded in distances of d = 3 µm to obtain information about the depth effect of the diamond slide burnishing process. Based on the investigations an increase of the residual compressive stresses could be obtained. This shows a particularly positive effect especially for additively manufactured components, as these often show a slight porosity and higher surface roughness as conventional manufactured components. In this way, crack propagation can be prevented and the fatigue strength can be increased.