Now showing 1 - 4 of 4
  • Publication
    Numerische Simulation einer AM-Prozesskette im DED Auftragschweißen
    Das DED Auftragschweißen ist ein additives Fertigungsverfahren für Metalle, bei dem das Material schichtweise auf ein Substrat aufgetragen wird. Die schnellen Temperaturzyklen rufen Spannungsgradienten im Bauteil hervor. Der schichtweise Aufbau der Bauteile verursacht eine anisotrope Mikrostruktur. Mittels nachgelagerter Wärmebehandlung können diese Effekte verringert werden. Im anschließenden Schritt der Prozesskette wird das additiv hergestellte Bauteil mittels Drahterodieren von dem Substrat abgetrennt. In diesem Beitrag wird eine thermo-mechanische Simulation der gesamten Prozesskette vorgestellt, welche den additiven Aufbau, Wärmebehandlung und das Abtrennen vom Substrat beinhaltet. Anstelle der in der Literatur üblichen schichtweisen Modellierungsstrategie für die DED Simulation wird das gesamte Bauteil in einem Stück vernetzt und der vollständig transiente, schichtweise Materialauftrag über Elementgruppen realisiert. Im Gegensatz zu früheren Simulationen muss der nichtlineare Kontakt zwischen den Schichten nicht berücksichtigt werden, was die Rechenzeiten deutlich verkürzt. Das Modell wurde validiert mittels Abgleiches des Verzugs aus Simulation und Experiment. Die Proben, bestehend aus DIN 1.4404 (AISI 316L), wurden nach jedem Prozessschritt 3D gescannt um den Verzug zu quantifizieren. Zusätzlich wurden Querschnitte und Härtetests nach Vickers von unterschiedlich behandelten Proben durchgeführt, um den Effekt der Wärmebehandlung auf die Mikrostruktur und die Härte des Bauteils zu untersuchen.
  • Publication
    Automated tool-path generation for rapid manufacturing and numerical simulation of additive manufacturing LMD geometries
    ( 2019) ;
    Wang, Jiahan
    ;
    Graf, Benjamin
    ;
    In additive manufacturing (AM) Laser Metal Deposition (LMD), parts are built by welding layers of powder feedstock onto a substrate. Applications for steel powders include forging tools and structural components for various industries. For large parts, the choice of tool-paths influences the build-rate, the part performance and the distortions in a highly geometry-dependent manner. With weld-path lengths in the range of hundreds of meters, a reliable, automated tool path generation is essential for the usability of LMD processes. In this contribution, automated tool-path generation approaches are shown and their results are discussed for arbitrary geometries. The investigated path strategies are the classical approaches: ""Zig-zag-"" and ""contour-parallel-strategies"". After generation, the tool-paths are automatically formatted into g-code for experimental build-up and ASCII for a numerical simulation model. Finally, the tool paths are discussed in regards to volume-fill, microstructure and porosity for the experimental samples. This work presents a part of the IGF project 18737N ""Welding distortion simulation"" (FOSTA P1140)
  • Publication
    Finite element analysis of in-situ distortion and bulging for an arbitrarily curved additive manufacturing directed energy deposition geometry
    ( 2018) ;
    Marko, Angelina
    ;
    Graf, Benjamin
    ;
    With the recent rise in the demand for additive manufacturing (AM), the need for reliable simulation tools to support experimental efforts grows steadily. Computational welding mechanics approaches can simulate the AM processes but are generally not validated for AM-specific effects originating from multiple heating and cooling cycles. To increase confidence in the outcomes and to use numerical simulation reliably, the result quality needs to be validated against experiments for in-situ and post process cases. In this article, a validation is demonstrated for a structural thermomechanical simulation model on an arbitrarily curved Directed Energy Deposition (DED) part: at first, the validity of the heat input is ensured and subsequently, the model's predictive quality for in-situ deformation and the bulging behaviour is investigated. For the in-situ deformations, 3D-Digital Image Correlation measurements are conducted that quantify periodic expansion and shrinkage as they occur. The results show a strong dependency of the local stiffness of the surrounding geometry. The numerical simulation model is set up in accordance with the experiment and can reproduce the measured 3 dimensional in-situ displacements. Furthermore, the deformations due to removal from the substrate are quantified via 3D scanning, exhibiting considerable distortions due to stress relaxation. Finally, the prediction of the deformed shape is discussed in regards to bulging simulation: to improve the accuracy of the calculated final shape, a novel extension of the model relying on the modified stiffness of inactive upper layers is proposed and the experimentally observed bulging could be reproduced in the finite element model.
  • Publication
    Assessing the predictive capability of numerical additive manufacturing simulations via in-situ distortion measurements on a LMD component during build-up
    ( 2018) ;
    Graf, Benjamin
    ;
    Due to rapid, localized heating and cooling, distortions accumulate in additive manufactured laser metal deposition (LMD) components, leading to a loss of dimensional accuracy or even cracking. Numerical welding simulations allow the prediction of these deviations and their optimization before conducting experiments. To assess the viability of the simulation tool for the use in a predictive manner, comprehensive validations with experimental results on the newly-built part need to be conducted. In this contribution, a predictive, mechanical simulation of a thin-walled, curved LMD geometry is shown for a 30-layer sample of 1.4404 stainless steel. The part distortions are determined experimentally via an in-situ digital image correlation measurement using the GOM Aramis system and compared with the simulation results. With this benchmark, the performance of a numerical welding simulation in additive manufacturing is discussed in terms of result accuracy and usability.