
��������	�
�	����

��������	��	���������
���
���	�����	
���
���	���	��	
���	��	��
���	

��!�"#
����������
���	$
���%�&��

'��(�!
)�&�&����$
*�+��
�%���$
	%(����,
���.���

�������	
��
�
�����
�������

Markus Zeilinger, Peter Schoo, Eckehard Hermann

Advances in IT Early Warning

Fraunhofer Verlag

II

Kontaktadresse:
Fraunhofer AISEC Research Institution for Applied and Integrated Security
Parkring 4
D-85748 Garching near München (Germany)
Telefon +49 (0)89 3229986-292
Telefax +49 (0)89 3229986-299
URL http://www.aisec.fraunhofer.de/

Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche
Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im
Internet über http://dnb.de abrufbar.
ISBN 978-3-8396-0474-8

Druck und Weiterverarbeitung:
IRB Mediendienstleistungen
Fraunhofer-Informationszentrum Raum und Bau IRB, Stuttgart

Bildnachweis Umschlag: c© yanikap / Fotolia.com

Für den Druck des Buches wurde chlor- und säurefreies Papier verwendet.

c© by Fraunhofer Verlag, 2013
Fraunhofer-Informationszentrum Raum und Bau IRB
Postfach 800469, 70504 Stuttgart
Nobelstraße 12, 70569 Stuttgart
Telefon +49(0)711 970-2500
Telefax +49(0)711 970-2508
E-Mail verlag@fraunhofer.de
URL http://verlag.fraunhofer.de

Alle Rechte vorbehalten

Dieses Werk ist einschließlich aller seiner Teile urheberrechtlich geschützt. Jede Verwertung, die über die
engen Grenzen des Urheberrechtsgesetzes hinausgeht, ist ohne schriftliche Zustimmung des Verlages un-
zulässig und strafbar. Dies gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen
sowie die Speicherung in elektronischen Systemen.
Die Wiedergabe von Warenbezeichnungen und Handelsnamen in diesem Buch berechtigt nicht zu der An-
nahme, dass solche Bezeichnungen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei
zu betrachten wären und deshalb von jedermann benutzt werden dürften.
Soweit in diesem Werk direkt oder indirekt auf Gesetze, Vorschriften oder Richtlinien (z.B. DIN, VDI)
Bezug genommen oder aus ihnen zitiert worden ist, kann der Verlag keine Gewähr für Richtigkeit,
Vollständigkeit oder Aktualität übernehmen.

Preface

For the last fifteen years, the Internet has been the technological backbone of our
society. But as in many other cases throughout history, technology has been misused.
Cybercrime, Cyberespionage, and Cyberactivism are the dark side of the coin.

We need preventive measures and global monitoring technologies to improve the
resilience of the Internet against technical failure, natural catastrophes and criminal
abuse.

In our daily life we have a well-functioning weather forecast system where public
and private sensor nets give us significant knowledge about upcoming hurricanes or
the weather for the next holiday trip. A similar system with the same accuracy
would help us to mitigate the emerging threat situation significantly.

Today’s signature-based and anomaly detection systems lack the capability to
look ahead. We need systems that can inform us far in advance on technical mal-
functions or threats to be expected. We need a clear and reliable model that effec-
tively represents reality and allows predictions. This must also take into account
economical constraints and result in an acceptable risk level.

This book gives a contemporary, state of the art overview on IT Early Warn-
ing Systems (EWS). It covers recent research of top scientist and institutions. The
different articles present an overview of the current research and running projects
like IP darkspace analysis, malicious botnet activity by flow data collection in large
scale networks, integrated honeypot based Malware collection and analysis, signa-
ture based approaches or even hardware Trojans to name a few. All these approaches
concentrate on single aspects of EWS, in a global IT EWS a combination is needed.
We are still far away from systems which detect and react in a satisfactory way.
Although nobody has found the silver bullet of early warning there are promis-
ing approaches described here. Further research, prototyping and implementation
in collaboration with the ISPs and owners of the internet infrastructure will be
needed.

The papers presented in this book are not only of academic interest for national
security agencies but also create the possibility for new security products which can
be used in the IT-departments of private companies. This kind of applied research
creates new business models and improves the competitiveness of our industry.

Enjoy reading it!

Prof. Dr. Udo Helmbrecht October 2012
Executive Director of ENISA
European Network and Information Security Agency

IV

Workshop Organization

The workshop on Early Warning Systems – the third in row – has been organized
by OÖFH Hagenberg, Linz, Austria and Fraunhofer AISEC Research Institution
for Applied and Integrated Security, Garching near Munich, Germany.

Commitees

Program: Eckehard Hermann,
University of Applied Sciences Upper Austria
Peter Schoo,
Fraunhofer AISEC
Markus Zeilinger,
University of Applied Sciences Upper Austria

Local Organizer: Manfred Schleinzer,
Bundesministerium für Landesverteidigung und Sport

Sponsoring Institutions

Nokia Siemens Networks Management International GmbH for sharing the publi-
cation effort. Institute of Software Technology and Interactive Systems and SBA
Research, Vienna University of Technology, as Organizer of the ARES Conference
2011, Vienna.

Notes from the Editors

Luckily and with the help of many other authors we managed to create a com-
pendium type of collection of recent research results that are truly encompassed
in the application domain of IT early warning systems. These contributions range
from malware collection, detection and analysis on hosts and in flows, via artificial
intelligence based approaches, up to economical aspects. In their majority they con-
tribute to the sensor field of early waring. We had the pleasure to welcome almost
all of the authors in the series of workshops that we organized between 2009 and
2011 in Munich, Germany, Linz, Austria and Vienna, Austria.

However, rather than publishing proceedings, which would be based on the con-
tribution to the recent Vienna workshop in 2011 only, we have decided to address
topics of research in the application domain of IT early warning in a wider for-
mat. We have hence invited a couple of other authors to contribute to this book
to achieve a representative coverage of the research field. In this way we have man-
aged to arrange a book with some added value, as we think. We are sure that the
addressed topics have for the next decade – if not longer – a significant relevance
in the research community and for early adopters on the practitioner side.

The publications of our Linz Workshop in 2010 have been done in the Journal
”Datenschutz und Datensicherheit – DuD, 2011, Volume 35, Number 4” and can
also be found under SpringerLink.

We like to thank Prof. Dr. Claudia Eckert and Prof. DI. Robert Kolmhofer for
their support by the organization of our workshops during the last years and we
like thank Prof. Dr. Udo Helmbrecht for his openness to enrich this book with his
preface.

September 2012 M. Zeilinger
P. Schoo

E. Hermann

Table of Contents

The Many Facets of IT Early Warning – Open Issues, Current Research 1
Markus Zeilinger, Peter Schoo and Eckehard Hermann

An Ideal Internet Early Warning System . 9
Dominique Petersen and Norbert Pohlmann

IP Darkspace Analysis . 21
Tanja Zseby

Flow Data Collection in Large Scale Networks . 30
Pavel Čeleda and Vojtěch Krmı́ček

Flow-based Brute-force Attack Detection . 41
Martin Drašar, Jan Vykopal, Philipp Winter

Malware in Hardware Infrastructure Components . 52
Christian Krieg and Edgar Weippl

Integrated Honeypot based Malware Collection and Analysis 67
Martin Brunner, Christian M. Fuchs and Sascha Todt

Predentifier: Detecting Botnet C&C Domains From Passive DNS Data . . 78
Tilman Frosch, Marc Kührer and Thorsten Holz

Statistical Modeling of Web Requests for Anomaly Detection in Web
Applications . 91

Harald Lampesberger, Markus Zeilinger and Eckehard Hermann

Automatic Generation of Generalizing Behavioral Signatures for Early
Warning Systems . 102

Martin Apel and Michael Meier

A Concept for Secure and Privacy-Preserving Collaborative Information
Sharing . 113

Hans Hofinger and Sascha Todt

IO: Deploying An Interconnected Asset Ontology To Enhance Information
Retrieval Regarding Security Processes . 124

Henk Birkholz

Between Early Warning and Emergency Response - An economical
perspective - . 136

Heiko Kirsch and Michael Hoche

The Many Facets of IT Early Warning – Open

Issues, Current Research

Markus Zeilinger1 and Peter Schoo2 and Eckehard Hermann1

1 University of Applied Sciences Upper Austria
Softwarepark 11, 4230 Hagenberg, Austria,
{firstname.lastname}@fh-hagenberg.at

http://www.fh-ooe.at
2 Fraunhofer AISEC

Parkring 4, 85748 Garching (near Munich), Germany
peter.schoo@aisec.fraunhofer.de,
http://www.aisec.fraunhofer.de

Abstract. Systems encompassing functionality to detect anomalies or exceptional situa-
tions and that derive predictive conclusions out of observations made on traffic flows, in the
infrastructure elements, on hosts or end user devices are called IT Early Warning Systems
(EWSs). In this contribution the state of the art, open issues and research directions field
of current IT Early Warning research activities are discussed.

1 Introduction

In securing cyber space the first choice is very obviously to take preventive measures
such that operational risks, with economically viable effort, are minimized to an ac-
ceptable level. While this is first choice for preventing loss of integrity, control or
information, cyber space is additionally protected by systems that detect anomalies
or exceptional situations – systems that derive predictive conclusions out of obser-
vations made on traffic flows, in the infrastructure elements, on hosts or end user
devices. These systems are EWSs, which enable pro-active security measures and
may support to improve situational awareness or even suggest action in exceptional
situations.

An EWS may encompasses both, signature based as well as anomaly detection
systems. Certainly, anomaly detection makes early warning because of the capability
to understand exceptional situation that have not been seen before or the detection
of zero day exploits. This kind of early warning is oriented towards new threats.
However, also signature based approaches take a role in EWSs. The recognition of
flaws and attacks that have been detected earlier can be helpful information for the
situational awareness of others, for example, in the case of collaboration with other
parties. More strictly seen, collaborative warnings are less depended on anomaly
detection and more dependent on sharing information. Hence, the more an EWS is
focussed on anomaly detection and the more willingness exist to share information,
the more effectively can such a system be operated, such that the frequency of

2 Markus Zeilinger, Peter Schoo, Eckehard Hermann

false positives alarms is minimized, while true positives for all participating and
dependent parties are maximized.

Like in other application domains different from information technologies, that
have been researched successfully for early warnings, the benefit is in helping to
prevent loss or damage based on observations that allow helpful prediction. In a
number of other application domains early warnings have shown to make useful con-
tributions, if not life preserving warnings. Very relevant are, for example, tsunami,
earthquake or rockfall and landslide early warning systems that are installed and
do very useful jobs. Earthquake early warning is an illustrative example, because
it shows that the early warning builds of the models of those geophysical processes
that cause destruction. The propagation of primary and secondary seismic waves (p-
waves and s-waves), can actually be modeled and is used to determine events, their
geographical locations, travel time of shock waves and severity of an earthquake. In
other words, there is a clear and reliable model that effectively represents reality and
allows predictions. One recent example is the Japanese disaster preparedness mea-
sure for which mobile operators distribute warnings based on detected immanent
seismic activities to users in areas the activities take effect.

In IT Early Warning (EW) we are far away from comparable processes, for
example, considering only warnings to be issued to a subset of users that use a
specific type of affected computer systems. When looking to the initial triggers that
give the reasons to generate warnings, then the detection of new and upcoming
exploits is less predictable in computer and communication systems than, for ex-
ample, underlying models in geophysics on earth. One reason for this is evolution
and innovation. Although we do, at this point in time, not have a model for IT
EWS processes, this is no indication that EWS can not be effective in the future
nor that their deployment can not be helpful for the protection of the cyber space.
Successful IT EW processes are not only dependent on technology. Many of the
instruments that can help improving the protection of the cyber space do yet need
organizational, regulatory or legislation preparations.

In a comparative study of cyber attacks [1], it shows, for example, that spend-
ing the effort on ratifying Conventions on Cybercrime, installing sensors to make
observations or deploying measures to mitigate cyber attack, it will turn out to
become a positive effect for those nations that are acting pro-active in this field.
The positive effect is that such nations are less often the places from where attacks
are started and, due to higher awareness and protections, these countries are less
often the targeted victims. Whereas not being pro-active increases the probability
of becoming a victim or the base camp from where cyber attacks are started. This
study indicates that positive effects can be caused when being pro-active in the
protection of the cyber space. But it also seems to indicate that more research and
technology development is required in EWSs at the same time, which improve tech-

The Many Facets of IT Early Warning – Open Issues, Current Research 3

nology and, additionally, positioning such systems under organizational, regulatory
or legislation constraints into their ecosystems.

2 Buidling Blocks of EWS

��������	�

��
�������
�
����	�

��
�������
�
����	�

��
�������
�
����	�

����	��	�
������

�	����	�
�������
���

���
	
��

Fig. 1. Main building blocks of IT EW

A main building block of every EWS are sensors. Sensors mainly differ in the
way they are placed in networks, the type of data they collect, and the methods
they use for data analysis. For global EWS placement of a certainly huge amount
of different sensors is necessary. It is critical to find the right placements for the
sensors. These placements depend on the structure of networks and how network
data is routed through them. Organizations like the Cooperative Association for
Internet Data Analysis (CAIDA)3 help to better understand the structure of the
Internet and hence derive the right spots for sensor placement.

Sensors can collect network data on different levels of detail. Depending on the
level of detail, analysis methods will be able to detect different kinds of anomalous
activities and attacks. Collecting flow data, e.g. source and destination informa-
tion, timestamp, transport protocol, byte/packet count of active connections, al-
lows detection of network based attacks like probing, worm propagation activities
or (distributed) denial of service (DoS) attacks. To be able to detect attacks on
application level, sensors need to collect the whole payloads of packets, e.g. in pcap

format. One further type of sensor that is widely employed in EW are honeypots.

3 http://www.caida.org

4 Markus Zeilinger, Peter Schoo, Eckehard Hermann

Honeypots are mainly used to collect samples of (new) malware, which are then
analyzed in (semi)-automatic analysis environments, e.g. Anubis4

In the past years many activies in EW focused on developing new analysis
methods for network data especially in the area of anomaly detection. Surprisingly
anomly detectors are only rarely employed in “real world” settings. Current research
[2,3] presents two main reasons for this situation. On one hand basic assumptions for
anomaly detection [4] are maybe not accurate anymore, due to evolution of networks
and network traffic. On the other hand anomaly detectors often lack of practical
usability, e.g. due to high false positive rates (FPR) or too little interpretation of
results (semantic gap). Therefore more focused research in this area is necessary.

Beside basic detection of known and unkown malicious activities with signature-
based and anomaly detectors, correlating events over time and space is an important
requirement for EWSs. Events at different times and/or different sensors may be
in itself harmless but relating them together may reveal them as single steps of
multi-stage attacks. Correlating events is especially necessary to create situational
awareness of global Internet activity.

To get the “early” in Early Warning effective prediction models are needed that
are able to derive out of sensor data analysis conclusions about the prospective
development of a situation, e.g. emerging attacks. This is crucial for success, cause
only if the EWS is able to predict the prospective development of a situation, it
is able to warn people possibly affected by this development in time and thereby
prevent or at least reduce damage. As stated above we do not have such prediction
models for EW in IT right now. This is a problem that still needs to be solved.

Warning as many people possibly affected by a damaging event as possible, is the
main function of every EWS. Important aspects of warnings are the content of the
warning and the way the warning is distributed. The warning should be as precise
and clear as possible. It should be distributed through one or more communication
channels that are appropriate for the warning cause and accessible for the people
targeted by the warning. For example, it is more effective using speakers and/or fire
sirens in villages/cities nearby the sea for tsunami early warning than only sending
e-mail messages.

For all components in EW cooperation between many different stakeholders is
necessary, e.g. governments, providers, companies. Since the Internet is not bound
to company or country borders but global by nature, things happening in one part
of the Internet can quickly effect other parts. Therefore it is most important that the
stakeholders have a method for sharing relevant information as, for example, sensor
data, analysis data, results of correlations, warnings. The key requirement for such
a method is preserving anonymity and privacy for all participants. Obviously, legal
regulations will be necessary to force and regulate participation in such collaborative
information exchange.

4 http://anubis.iseclab.org/

The Many Facets of IT Early Warning – Open Issues, Current Research 5

3 Overview on Contribution

In this contribution, “The Many Facets of IT Early Warning – Open Issues, Current
Research”, the state of the art, open issues and research directions field of current
IT Early Warning research activities are discussed – a field in move, not easy to
delineated. Petersen and Pohlmann discuss in their article “An ideal Internet Early
Warning System” a model for the early warning and it will be shown which com-
ponents need to be protected and why an early warning can only work through
collaborative approaches and a variety of systems.

For the network and traffic analysis area, Zseby gives in “IP Darkspace Analysis”
a general overview on the use of IP darkspaces for early warning. The author shows
what kind of analysis can be done with IP darkspace data and what kind of results
can be achieved. The general use of flow data collection to monitor large scale
networks for early warning is demonstrated in “Flow Data Collection in Large Scale
Networks”. The Celeda et al. show the advantages and disadvantages, possible data
processing techniques and present two use cases for flow data collection in end user
and transit networks. Drasar, Vykopal and Winter focus in “Flow-based Brute-force
Attack Detection” on detecting brute force attacks in flow-based network data. They
discuss five different detection techniques, their strengths and their drawbacks. To
show the fragility of some methods, several evasion techniques are demonstrated.

Regarding malware and under the headline “Malware in Hardware Infrastructure
Components”, Krieg and Weippl present and survey and discuss various approaches
to detect malware or trojans that affect hardware, which can become a serious
issue for network elements in the infrastructures we are using in daily life. Martin
Brunner, Christian M. Fuchs and Sascha Todt present in the article “Integrated
Honeypot based Malware Collection and Analysis” a new approach for integrated
honeypot based malware collection and analysis with the intention to cover the
entire malware execution life-cycle and thus make advances for better control of
high-interaction honeypots. Their approach is based on the assumption that the
ability to track this entire life-cycle facilitates a better understanding of current
and emerging malware.

In “Predentifier: Detecting Botnet C&C Domains From Passive DNS Data”
Frosch et al. show how a statistical model built based on 14 features from passive
DNS data and other sources like WHOIS can be used to decide whether a domain
name is used for malicious activities (C&C botnet traffic) or not. Lampesberger et
al. present in “Statistical Modeling of Web Requests for Anomaly Detection in Web
Applications” a new way to analyze anomalies on higher layers that use http as
the communication protocol between distribute applications. In this self-adjusting
and learning approach the anomalies in inter-application communications are vali-
dated by statistical models. Their evaluation results show a high precision and ac-
curateness. Under the headline “Automatic Generation of Generalizing Behavioral

6 Markus Zeilinger, Peter Schoo, Eckehard Hermann

Signatures” Apel and Meier discuss the generalization of behavioral signatures, con-
sidering the question, which subset of a polymorphic malware family one need to
know to know them all?

Hans Hofinger and Sascha Todt present in their article “A Concept for Secure
and Privacy-Preserving Collaborative Information Sharing” a concept for secure and
privacy-preserving information sharing across borders of administrative domains
and show how existing techniques can be used to fulfill the manifold requirements
of IT Early Warning.

Birkholz presents in “IO: Deploying An Interconnected Asset Ontology To En-
hance Information Retrieval Regarding Security Processes” advances in the develop-
ment of IO. He proposes a terminology that adapts definitions found in the context
of organizational memory information systems. A generic concept of Group enables
categorizing assets, enhancing information retrieval and new use cases demonstrate
the interaction of IO with producers and consumers of information in the context
of information retrieval.

Heiko Kirsch and Michael Hoche focus in the Section “Between Early Warn-
ing and Emergency Response – An economical perspective” on decision support for
optimal service value and they discuss a concept to establish a mechanism that
ensures proactive and reactive implementation of security countermeasures to meet
real economic security needs.

4 Research Challenges

Analyzing past developments in EWSs we identify the following important aspects
for future research: sensor data analysis and here especially anomaly detection,
correlation of event data, tools for situation awareness presentation and methods
for collaboration. We think that strong cooperative efforts from many different
stakeholders are necessary to master these research challenges.

As stated above there has been a lot of research on anomaly detection in the
past decade but many solutions lack of practical usability. This has to be address
in future research urgently. Sommer et al. [3] describe key factors in developing
accurate and usable anomaly detectors:

– understanding the threats an anomaly detector should be able to catch,
– keeping the scope as narrow as possible,
– reducing costs by reducing false positive rates (Axelsson claims in [5] false posi-

tive rates less than 10−5),
– closing the semantic gap (e.g. by doing root cause analysis to better understand

the mechanisms and organizations/people behind attacks) and
– sound evaluation on real world network traffic.

Bringing together results of many different sensors by correlating their events
is another open research topic. Correlating events from different types of sensors,

The Many Facets of IT Early Warning – Open Issues, Current Research 7

happened at different times and at different spots in the Internet is a difficult task
and we need expertise form the fields of data mining and knowledge engineering.

Last but not least collaboration in EWSs needs massive research effort. Col-
laboration is necessary in all aspects of EW, as, for example, exchanging sensor
data, correlation of sensor events, warning distribution, regulations, etc. and there-
fore concepts and methods for information sharing are needed. These concepts and
methods should allow the stakeholders to exchange information of any kind by si-
multaneously preserving anonymity and privacy for the participants. An essential
question is, what can be achived by legal regulations and what can be solved by
technical measures like privacy preserving techniques and cryptography?

There are currently some promising activities going on that try to address at
least some of these research topics:

– WOMBAT5 (WorldwideObservatory of MaliciousBehaviors andAttackThreats):
The WOMBAT project aims at providing new means to understand the existing
and emerging threats that are targeting the Internet economy and the net citi-
zens. To reach this goal, the proposal includes three key workpackages: (i) real
time gathering of a diverse set of security related raw data, (ii) enrichment of this
input by means of various analysis techniques, and (iii) root cause identification
and understanding of the phenomena under scrutiny. The acquired knowledge
will be shared with all interested security actors (ISPs, CERTs, security vendors,
etc.), enabling them to make sound security investment decisions and to focus
on the most dangerous activities first.

– ASMONIA6 (Attack analysis and Security concepts for MObile Network in-
frastructures, supported by collaborative Information exchAnge): The goal of
ASMONIA is the development of a holistic security concept for mobile network
infrastructures that satisfies the diverse requirements of modern networks. In-
tegrity protection and attack detection solutions that exploit characteristics of
resilient and flexible systems like cloud computing will therefore be integrated.
The additional integration of collaborative information exchange mechanisms
will improve the security level of modern communication networks. The mains
tasks of the ASMONIA project are: Risk analysis of mobile networks and end
devices, defining holistic and collaborative protection concepts, protecting the
integrity of network devices, incorporation of resilient and flexible systems as
essential protection components and development of attack detection and as-
sessment techniques.

– NISHA7 (Network for Information Sharing and Alerting): The objective of
Network for Information Sharing and Alerting (NISHA) is to further develop
an existing prototype for an European Information Sharing and Alert System

5 http://wombat-project.eu/
6 http://www.asmonia.de/
7 http://fisha-project.eu/

8 Markus Zeilinger, Peter Schoo, Eckehard Hermann

achieved under the FISHA project into a pilot version of the system. The ex-
pected outcome is a pilot network consisting of four local portals which are to be
set up in member states, locally reaching citizens and SMEs. The network will
function based on an organisational model proposed within the project frames.
The project will include a study of organizational and legal aspects concerning
functioning of the system as well as technical development and implementation
encountered while establishing the pilot, with a focus on lessons learned and
suggestions for improvement.

– FIDeS8 (Early Warning and Intrusion Detection System based on combined
methods of Artifical Intelligence): Aim of the FIDes project ist the development
of a system for assisting in early detection of Internet based attacks. FIDes
focuses on using methods of AI for assisting the operator in analyzing result
of anomaly detection. This is done e.g. by giving feasable reasons for attacks,
giving in depth knowledge on attacks, predicting further attack development and
assistance in selecting appropriate countermeasures.

– PREDICT9 (Protected REpository for the Defense of Infrastructure Against
Cyber Threats): PREDICT is a community of producers of security-relevant
network operations data and researchers in networking and information secu-
rity. Through its repository, it provides developers and evaluators with regularly
updated network operations data relevant to cyber defense technology develop-
ment.

References

1. S. H. Kim, Q.-H. Wang, and J. B. Ullrich. A comparative study of cyberattacks. Commun. ACM,
55(3):66–73, Mar. 2012.

2. C. Gates, C. Taylor. Challenging the anomaly detection paradigm: a provocative discussion. Proceedings
of the 2006 Workshop on new security paradigms NSPW 2006, 21–29, 2007.

3. R. Sommer, V. Paxson. Outside the Closed World: On Using Machine Learning for Network Intrusion
Detection. IEEE Symposium on Security and Privacy, 305–316, 2010.

4. D. Denning. An intrusion-detection model. IEEE Transactions on Software Engineering, 13(2):222-232,
1987.

5. S. Axelsson. The base-rate fallacy and its implications for the difficulty of intrusion detection. Pro-
ceedings of the 6th ACM conference on Computer and Communications Security (CSS’99), New York,
USA, 1999, pp. 1-7.

8 http://www.fides-security.org/
9 https://www.predict.org/

An Ideal Internet Early Warning System

Dominique Petersen and Norbert Pohlmann

Institute for Internet Security
University of Applied Sciences Gelsenkirchen

{petersen,pohlmann}@internet-sicherheit.de

Abstract. Today, many manufacturers advertise that they have developed the one, ulti-
mate Internet Early Warning System (IEWS) which shall protect the customers from all
the dangers on the Internet. But what does an ideal and global Internet Early Warning
System need in reality? In this article, a model for the early warning is constructed and it
will be shown which components need to be protected and why an early warning can only
work through collaborative approaches and a variety of systems. Then some of the current
research work done by the Institute for Internet Security are outlined in the area of Internet
Early Warning.

1 Introduction

With the theme “Internet Early Warning Systems” in the same breath the state-
ments are often that the critical infrastructure protection (CIP) is very necessary
and a primary goal of the state is to enforce this with all technological means. In
addition to the transport-, energy-, financial- or service-area also the Internet - as
we know it today - is a critical infrastructure. According to the assessment of the
state this critical infrastructure must be protected.

To achieve this goal it is necessary to protect the functionality of the Internet
and to keep it alive. As the Internet consists of many Autonomous Systems (AS),
which are connected together, special attention must be paid to the protection of
the individual sub-systems of this infrastructure [1].

1.1 Relevant aspects of the early warning

Here, two aspects are crucial. Firstly, it is important to identify threats as early
as possible to reduce possible damage or at best even eliminate all harm. The
containment and avoiding the damage here depends upon successful detection very
much on the initiation of potential countermeasures. Secondly, it is necessary for
the respective infrastructures to be adjusted and improved, so they are prepared
for future requirements.

1.2 Threat scenarios

Currently, five different types of threats are distinguished and important on the
Internet. In a DDoS (distributed denial of service) many requests and intense traffic

10 Dominique Petersen, Norbert Pohlmann

is generated from multiple distributed sources, so that the narrow-band target enters
an overload situation and is not longer available for a normal use. Depending on
how quickly the DDoS is done: in an emergency only seconds remain for an early
warning.

Another threat are exploits, that exploit current vulnerabilities in software of
operating systems. In networks where the exploits occur for the first time, an early
warning of single network packets is almost impossible. Depending on the degree
of diffusion speed and aggressiveness of the exploit yet unaffected infrastructures
could get timely warnings. Again, the time for the early warning consists of only
seconds in the worst.

Malware is currently one of the most invasive threats in the Internet. Systems
infected with malware automatically try to attack other systems and redistribute
themselves this way. How quickly this happens depends on the design of the mal-
ware. For an Early Warning System this means that the time for a warning can be
a few minutes to several days.

An equally serious threat are botnets. Sometimes they consist of hundreds of
thousands of systems controlled by a unnoticed botnet and execute commands, such
as a DDoS. To identify which targets are attacked at which time, it is necessary to
observe the communication of the botnet and to analyze it. The time for an early
warning is here defined by the communication rate of the botnet and its structure
and moves within a few minutes.

The last major threat scenario is made possible by the Internet routing. It has
happened in the past that wrong distribution of IP prefixes were made in the routing,
and so entire Autonomous Systems, and therefore also the entire traffic to these
networks, diverted to other countries. Here, the early warning time also depends on
the distribution speed of routing and is only a few minutes.

1.3 Response time for early warning

Considering the threat scenarios is clear that in general very little time for an early
warning is available, and that all components involved must respond as quickly
and efficiently as possible. In many cases it is impossible to issue a warning before
the actual and concrete attack is launched. It will be easier however, if a warning
of a potential threat is issued. Especially for a collaborative future Early Warning
System infrastructures participators could be informed in time to avert possible
damage.

2 Definition of an Internet warning system

Based on the basis of the goals, to improve the Internet and its infrastructures in
terms of safety and reliability, and to generate a continuous situation overview of

An ideal Internet Early Warning System 11

the IT infrastructure, which is carried out in cooperation with public and private
partners in the sense of a collaborative early warning, a definition for a Internet
Early Warning System could be as follows: Based on reliable results and results from
threats or in the event of IT security incidents that affect only few infrastructures
yet, an IT situation overview is continuously updated, and when an adequate and
relevant incident occurs, a qualified warning to potentially affected is disseminated
in order to reduce the potential damage caused or avoided altogether.

2.1 Mandatory functional requirements

An Early Warning System therefore needs a set of functional requirements: The
intrusion detection must be done at a time before concrete damage occurred and
early enough to minimize potential damage. Here it is important to consider both,
already known and unknown, attacks are detected.

The decision-making process and the development of countermeasures have to
be supported. This can e.g. performed by analysis tools and results visualization.
Expert systems will help in the decision making here. Ensuring and collection of
evidence for forensics must be guaranteed in order to perform legal prosecutions
later.

The current status and the development of the Internet traffic must be moni-
tored constantly. Questions, how the infrastructure needs to be extended or which
technologies increase or decrease of importance in the future, are important here.

The current IT situation overview along with an overview of all security events
must be generated continuously. Here, appropriate visualization methods help for
the situation analysis. Other requirements follow directly from the fact that the
Early Warning System itself needs to be protected. The stability and the security
of the system against attacks, maintaining the privacy, the maintainability and the
performance all are relevant aspects.

2.2 Asymmetric threats

Another problem is the asymmetric threats. Many attacks are carried out globally
and are not aimed at a specific location. The best example illustrates a distributed
denial of service attack (DDoS).

The response to a security incident occurred is currently initiated only locally
and therefore concerns only the particular infrastructure which acts against these
threats. All victims of a global attack must therefore execute the same or similar
reactions and counter-measures to reduce the damage or avert all harm. The total
cost is thus multiplied almost to the number of victims and the relevant counter-
measures.

Target of an Internet Early Warning System must therefore be to initiate ef-
fective responses to incidents for all partner systems, and this preferable in an
automated manner.

12 Dominique Petersen, Norbert Pohlmann

3 Structure of an Internet Early Warning System

Based on architecture and requirements of the particular operating company a
model for an Early Warning System can be set up (see figure 1). Foremost, the
system is defined by the targets that are to be achieved.

Equally important are the legal settings and conditions, in which the whole
early warning is performed. Depending on how the legal conditions in the state and
the company look, the Early Warning System can have more or less restrictions.
Relevant here are mainly the privacy standards that need to be adhered to, the
protection of the trust and the respective contract law. Not infrequently, the le-
gal framework defines the possibilities of an Early Warning System to achieve the
required goals.

Fig. 1. Model of an Early Warning System

An ideal Internet Early Warning System 13

Afterwards the respective company or organization, which is operating the Early
Warning System, and the partners involved (concerned organizations) determine the
model. The partners here may assume two different roles, active and passive. In the
active role the participants are involved in the establishment and operation of the
Early Warning System, e.g. by providing sensors, operating a situation awareness
room or by the creation and execution of countermeasures. Passive participants
consume almost all the information provided by the other Early Warning Systems.
Frequently, these are home users and small businesses.

The operator of an Early Warning System usually has a precise definition of the
organizational units with their respective relationships and clearly defined respon-
sibilities. In order to act more quickly, the necessary information flows and possible
responses must be clearly agreed. It is important for such a company to have a very
short decision process, efficient paths for the distribution of information as well as
clearly defined responsibilities to warn and to react in an emergency pretty early.

3.1 Technical Implementation

The architecture inside of the early warning model represents the technical com-
ponents that need to be implemented. The sensors, which are distributed to each
strategic positions in the network to be monitored and set up, collect the data,
which form the basis of the current status. The distribution of sensors depends on
which parts of the network are critical how representative the index shall be. Sev-
eral types of sensors have already been developed. It is possible to use sensors that
create a map of the total traffic, such as flow data, packet-based statistics sensors,
honeypots, log and availability data or approaches that capture all traffic.

Especially with the sensors used, it is extremely important to pay attention to
both, the privacy protection and the preservation of evidence. This can be achieved
by methods of pseudonomisation and anonymisation. Nevertheless, it must be en-
sured that for the particular operation area the ideal sensors are used. For example
the DE-CIX, the world’s largest commercial Internet exchange (CIX) point has a
peak traffic of 1.8 Tbit/s. The analysis component of the sensors must therefore
be very powerful, if not the included information will be strongly reduced. Alter-
natively, the use of sampling can be applied, wherein in a certain time or after a
certain number of packets flown through the network only a sample is taken from
and then evaluated.

3.2 Core of an Early Warning System

The analysis and recognition module (Analysis) is the core component of an Early
Warning System. It is responsible for identifying security incidents and to transmit
these in form of alarms. In order for the threat detection works, a number of technical
components is necessary (see figure 2, [2]).

14 Dominique Petersen, Norbert Pohlmann

The measured data of the installed sensors are sent to the signal layer. The
data is then filtered for relevance and analyzed. In addition, here is the detection of
abnormal and safety incidents, such as with misuse detection and anomaly detection
methods. These algorithms generate events that represent a particular occurrence
and include information that contributed to the construction process.

Fig. 2. Technical components of the detection methods

These events will now be passed to the event layer, where they are correlated.
It is advisable to include more information about incidents or security flaws from
external, non-technical sources (e.g. CERT’s) in order to make a better conclusion.
If the analysis concludes that the individual events are not only an anomaly, but a
specific incident or particular threat, an alarm will be generated and forwarded to
the responsible person in the company.

The biggest problem in identifying is firstly the vast amount of data that must
be analyzed. On the other hand, the big challenge is to identify previously unknown
attacks and slowly evolving trends.

To further improve the detection method, an Early Warning System has always
a learning component (element). Using the information returns from the events
and the results from the event layer, the algorithms are adjusted adaptively. For
example, some algorithms that monitor network traffic have to be adjusted after a

An ideal Internet Early Warning System 15

new service has been added, which was not previously known. The results from the
learning component flow as modeled findings in the knowledge base.

Another important aspect implements the knowledge base. It contains the knowl-
edge about the environment in which the Early Warning System is used as well as
information about the normal behavior of the network and attack signatures. Ide-
ally, there are also concrete countermeasures regarding certain, already known inci-
dents and practices when problems occur in the knowledge base. So they can really
help and be supportive, the contained data must be always kept current. This can
be achieved e.g. through the automatic generation of virus and attack signatures,
updating the normal state of the network traffic or functioning processes to solve
previously unknown problems.

The challenge with this is the continuous acquisition and storage of knowledge.
As part of an expert system, the knowledge base does not only provide informa-
tion for the solution of well-known problems which are available, but also provides
intelligent support when editing unknown incidents in which they propose similar
events and suppression instructions.

3.3 Legal consequences

If a concrete attack was detected at various levels of the recognition process and
ideally successfully repelled, it is about to call the criminals legally and financially
to account. To have a chance in the digital age at the court, the conservation of
evidence must be carried out consistently and trustworthy.

All information about the attacker are important, his approach and the damage
that the attack caused. Also these two important aspects are to be kept for further
use. On the one hand, the privacy protection laws (policies) must be followed, i.e. the
access to the stored data must be restricted and linked to a specific detected incident.
This is to protect personal data against misuse. On the other hand, the authenticity
of the evidence can be ensured by making tempering technically impossible.

3.4 Overall architecture of the Ideal Early Warning System

The previous explanations help to identify a number of important aspects that
significantly determine the overall architecture (see figure 3).

For instance, even at the local systems the incident management and the coun-
termeasures are defined by different rules. In addition to that, due to the different
environments, not every countermeasure can be applied to any network. Moreover,
in several countries, there are different legal frameworks which must be observed.

If a threat is detected in a situation awareness room, it is important for an early
warning to communicate the threat description to all participants involved, and
this preferably faster than the spread of the attack. Finally, it’s the Early Warning
System itself which has to be robust in order to perform its actual task.

16 Dominique Petersen, Norbert Pohlmann

Fig. 3. Structure of a global, ideal Early Warning System

In order to respond to the threats today it is needed to act globally and collab-
oratively. Large enterprises and governments need to operate sensors throughout
the Internet and analyze this data locally. If incidents are identified, that must be
as soon as possible spread to both active and passive participants involved by an
efficient information distribution network. Also, certain countermeasures must be
carried out collectively within the early warning participant network.

Also important is a distributed knowledge base, in which already occurred inci-
dents are stored and can be accessed by all partners for a quick and ideal response.

4 Developments of the Institute for Internet Security

The Institute for Internet Security - if (is) of the University of Applied Sciences
Gelsenkirchen has been working for more than seven years of applied research of
Internet Early Warning Systems. Within this project several technical implementa-
tions have been developed, of which three selected projects will be presented.

An ideal Internet Early Warning System 17

4.1 Internet Analysis System

Using the sensor-based Internet Analysis System (IAS), which was developed as
a research and development project of the if(is) in collaboration with the Federal
Office for Information Security (BSI), local and global overviews can be created and
analyzed in order to generate early warnings ([3]). The Internet Analysis System
provides the core component of the Internet Early Warning Systems of the if(is)
([4]).

Special key aspects of the project are a privacy-friendly collection of network
information and optimizing the amount of information data to store long-term, thus
to enable the analysis of trends and developments over long periods.

4.2 Goals and objectives of the IAS

The task of the Internet Analysis System is on the one hand the analysis of local
communication data in defined subnets of the Internet (networks), and on the other
hand the creation of a global view ([5]) on the subnets or the whole Internet with
the help of combining the many local views by the network operator ifself or an
independent party, such as the Institute for Internet Security.

The functions of the Internet Analysis System can be divided into four sections:
Build-up of the knowledge base, description of the current status, alerting, and
forecasting.

The main task of building up the knowledge base is a comprehensive analysis and
interpretation of the communication parameters of the Internet traffic with the goal
of discovering technology trends, relationships and patterns that represent different
states and views of the Internet. Based on this knowledge base anomalies are found
with actual measurements and reasons for the state changes which are analyzed
and interpreted. This happens, inter alia, with methods of artificial intelligence
(AI) such as probabilistic neural networks (PNN), which can be implemented on
graphic processing units (GPU) ([6]). It is important to find out whether the state
anomalies are of natural origin, such as through a technology change, or whether a
malicious attack is responsible. If such a malicious attack is present, the patterns
can be identified which characterize the attack, in order to detect these faster in
the future.

By the exact knowledge of the current state of a communication line and the
aid of historical, i.e. previously collected information from the knowledge base a
warning message will be generated, if there are are significant changes in traffic or
communications data. After that measures can be taken to protect and preserve the
functionality of the Internet.

Another important function is to show the status with a visual representation
of the state of the Internet, similar to a weather chart or traffic jam map. It is
important to make urgent decisions - especially at risk - easier and faster than ever

18 Dominique Petersen, Norbert Pohlmann

in order to explain complex issues to a third party. Here, it is not only warned of
dangers, but also the positive situation when the monitored networks are alright is
illustrated. In addition to a simplified view of complex structures the visualization
system must be supportive in order to signal anomalies, such as spam attacks or
malicious malware attacks, early enough so that preventative arrangements can be
taken and risks can be minimized.

By studying and analyzing the collected data from the IAS, the technology
trends, the relationships and the patterns, it is possible through a process of evo-
lution of the results obtained, to make predictions about changes in state of the
Internet (e.g. with the help of neural networks). In this way, attacks and major
changes can be identified pretty early to forcast damage effects and capacity bot-
tlenecks.

4.3 Functionality of the IAS

The Internet Analysis System consists of sonsors, which passively tap the network
traffic of communication lines of different networks and count communication pa-
rameters on different levels of communication (OSI model). In an evaluation system
the communication parameters are evaluated from different perspectives and dis-
played well-arranged.

In order to deliver results for a meaningful situation overview, the Internet Anal-
ysis System requires a very large amount of raw data, i.e. many counters of different
communication parameters on all communication levels (OSI layers 2 to 7). All anal-
yses, which the evaluation system performs, are based upon these raw data.

The sensors can send the raw data to one or more evaluation systems. Each
organization is able to monitor their communication with the Internet and perform
their own analyses with its evaluation system. To achieve a global and representative
view of the Internet, sensors have to be placed in different types of networks, such
as Global Tier One providers, transit providers, Eyeball Internet Service Providers
(DSL providers), content providers and large enterprise networks, as well as in
different regions.

4.4 FIDeS as intelligent correlator

The Institute for Internet Security was involved in another research project called
FIDeS (Early Warning and Intrusion Detection System on the basis of combined
methods of artificial intelligence), which is primarily a smart event correlation.

Intrusion Detection Systems (IDS) are widely used to protect corporate net-
works. Because they detect attacks against computer systems, among other things,
they help to discover the theft of important corporate know-how and to stop this.
These systems, however, currently still suffer from two major problems: First, they
work mostly signature-based and can therefore only detect attacks that are already

An ideal Internet Early Warning System 19

known and for which a signature exists. The second problem: Due to the high false
positive rate and the mass of the resulting events provided by these systems, security
managers are not able to process all events sufficiently.

In order to identify the attackers, a huge and ever-growing expertise is needed.
Only in this way related scenarios can be taken to events together and correlated
with other information such as vulnerability or inventory databases. FIDeS want
to solve these two problem points based on past research projects and new ideas,
to help security managers in their daily work. The aim is to improve the intrusion
detection and the subsequent forensic analysis. If possible even predictions shall be
taken to prevent critical incidents from the outset. Using these results, information
can then be analyzed across the enterprise in order to detect attack scenarios, that
may not have been noticed in one location, but maybe on a larger scale.

4.5 Technical implementation of FIDeS

FIDeS uses as many well established and standardized open-source systems and
open formats for data exchange as possible. Thus, further sensors or other compo-
nents connected to the base architecture can be implemented with any programming
language. The core sensor used here is the privacy-compliant Internet Analysis Sys-
tem.

The focus at FIDeS is the user who should to be supported in his daily work,
the monitoring of the security situation. For this reason, special attention is given
to the user interface. Large amounts of information can thus be detected quickly
and intuitively, in order to take decisions for actions in time.

Current technologies in the field of Web 2.0 help for this purpose in making the
system easy to handle and well configurable.

4.6 iAID with flow-based detection for very high Internet connectivity
nodes

In the research project iAID (innovative Anomaly- and Intrusion Detection) an
innovative anomaly detection and a new generation of IT Early Warning System
shall be realised, which has a high recognition rate for threats, taking current privacy
protection aspects into account, and shall be able to also analyze large quantities
of data in real time. It will be investigated, how it can respond appropriately to
threats using information fusion and creation of taxonomies of anomalies.

It must be developed a suitable way of collecting information about the network
traffic. This is to fulfill the three properties: Highly detailed description of network
traffic at all layers of the communication stack, resource-efficient collection and
storage of useful meta-information from the communication data and observing
and complying with privacy protection issues.

20 Dominique Petersen, Norbert Pohlmann

Once an optimal information collection system was implemented, in the next
step a methodology for the evaluation and classification is developed. The focus
here is to reduce the number of messages.

An important component of the new anomaly detection system (or Early Warn-
ing System) will be a feedback module, which will allow the analyst to review the
decisions of the anomaly detection system and thus improve future decisions.

Thus only major anomalies to reach the administrator, an intelligent filter use
the feedback of the analyst to filter out all flows or anomalies, which have similarity
to those who were considered unimportant. The filter shall also use methods of
artificial intelligence to perform this classification.

5 Summary

This article has presented the importance of Internet Early Warning regarding cur-
rent threats and how much time there is to protect the infrastructure in case of an
attack.

Furthermore, a definition of an Internet Early Warning System was described
and demonstrated the functional requirements.

Based on the definition and requirements the structure and the technical real-
ization of such an Internet Early Warning System have been carved out. Finally, it
was shown what an ideal Internet Early Warning Systems should contain.

The article was rounded off with the presentation of three projects in the area
of early warning, which the authors have realized in the recent years.

References

1. Sebastian Feld, Tim Perrei, Norbert Pohlmann and Matthias Schupp, Objectives and Added Value of
an Internet Key Figure System for Germany. In Proceedings of the ISSE 2011 - Securing Electronic
Business Processes - Highlights of the Information Security Solutions Europe 2011 Conference, 2011.

2. Sascha Bastke, Mathias Deml and Sebastian Schmidt, Internet Early Warning Systems - Overview and
Architecture. In 1st European Workshop on Internet Early Warning and Network Intelligence (EWNI
2010), 2010.

3. Malte Hesse and Norbert Pohlmann, Internet situation awareness. In eCrime Researchers Summit,
2008, 1–9., 2008.

4. Dominique Petersen, Kilian Himmelsbach, Sascha Bastke and Norbert Pohlmann,Measuring and warn-
ing. In kes – Professional journal for information security, issue 5/2008, 2008.

5. Norbert Pohlmann and Marcus Proest, Internet Early Warning System: The Global View. In ISSE
2006 Securing Electronic Business Process, Vieweg, 2006.

6. Sascha Bastke, Mathias Deml and Sebastian Schmidt, Combining statistical network data, probabilistic
neural networks and the computational power of GPUs for anomaly detection in computer networks.
In Workshop Intelligent Security (SecArt 2009), 2009.

IP Darkspace Analysis

Tanja Zseby

Fraunhofer Institute FOKUS, Berlin, Germany
tanja.zseby@fokus.fraunhofer.de

http://www.fokus.fraunhofer.de

Abstract. An IP darkspace is a global routable IPv4 or IPv6 address space that contains
no active hosts. All traffic sent to darkspace IP addresses is unsolicited, because it is destined
to non-existing hosts. Since malware often uses random addresses, e.g., for network scanning
or for address spoofing, a significant portion of malware traffic gets directed to darkspace.
This traffic provides a useful information source to identify and analyze security incidents
and misconfigurations.

1 IP Darkspace Traffic

Packets observed in IP darkspaces originate from misconfigurations or from pro-
cesses that send data to randomly selected IP addresses. Most packets observed in
darkspace have one of the following origins:

– Scanning: A large amount of traffic in darkspace originates from random scan-
ning activities. This is caused by attack tools or worm spreading mechanisms
that look for new victims by sending requests to random addresses or ports.
Vertical scans target a specific IP address and multiple ports. Horizontal scans
target multiple IP addresses and a specific port.

– Probing: Probing targets a specific IP address and a specific port. Probing traf-
fic can originate from one or multiple source addresses. Probing sources some-
times use spoofed source addresses or are part of a coordinated attack with
botnets.

– Backscatter: Malware often substitutes the real source IP address by randomly
chosen IP addresses (address spoofing) in order to conceal the origin of an attack.
Backscatter traffic is a side-effect of such attacks with spoofed addresses. When
an attacker sends requests with spoofed source addresses to a victim, the at-
tacked hosts respond by sending packets to the spoofed addresses. If the spoofed
addresses are selected randomly they may include darkspace addresses and the
response packets get directed to the darkspace. That means that backscatter
traffic is sent to darkspace addresses by legitimate hosts that are under attack.

– Misconfigurations: Some packets end up in darkspace because IP addresses
are wrongly configured. This can be caused by typos, by the use of example
addresses from literature, or wrongly configured software. Traffic caused by mis-
configurations is especially seen in darkspaces that contain simple addresses that

22 Tanja Zseby

are more likely to be used as default values or as example values in texbooks
(e.g. 1.1.1.1, 1.2.3.4). [22] describes the detection of several misconfigurations by
analyzing traffic to specific darkspace addresses.

Fig. 1. Darkspace Traffic: a) Random Scan, b) Backscatter

2 Objectives of Darkspace Analysis

The analysis of darkspace traffic is helpful in many ways. We differentiate the fol-
lowing objectives for analyzing darkspace data:

– Attack Detection and Malware Analysis : Due to the use of random ad-
dresses in malware, a fraction of the attack traffic, caused by scanning or by
backscatter, ends up in darkspace. Such traffic provides valuable hints about on-
going attacks and attack preparation activities. It can be used to assess the scale
of incidents and helps to analyze malware behavior, such as scanning routines
or malware signatures. Methods to use darkspace data for attack detection and
the analysis of malware are described for instance in [18], [13], [1], [21], [2], [22].

– Reducing Unwanted Traffic: One purpose of darkspace analysis is to identify
the origin of darkspace data and ask cooperative owners of infected hosts or
malconfigered software to fix the problem. With this one can reduce unwanted
traffic in the Internet and ”‘clean up”’ a specific address space. A reduction

IP Darkspace Analysis 23

of unwanted traffic makes an address range more attractive for future use. [22]
describes such cleaning efforts.

– Network Analysis: Darkspace traffic origins from all over the world. Events
that impact Internet connectivity in specific locations (e.g., natural disasters,
network failures, censorship) leave traces in darkspace traffic, because traffic from
these locations is absent, reduced or altered. Darkspace analysis has recently
been used to locate and investigate network outages caused by natural disasters,
network failures or censorship [10].

Darkspace analysis helps in early warning efforts by reporting observed incidents.
It helps to tune measurement efforts towards suspicious activities and to warn po-
tential future victims. A pre-requisite for this is that the information from darkspace
traffic is processed fast enough to detect incidents of interest. It is also useful to
share darkspace data among different organizations to enable coordinated detection
and warning efforts. For this it may be necessary to remove or anonymize sensitive
information, such as the darkspace address range or IP addresses of infected hosts,
beforehand.

3 Darkspace Analysis Methods

The amount of data received in a darkspace can be huge and it contains a lot of
uninteresting and repeating events. It is crucial to extract the right information from
the observed packets. We here describe different methods that have been proposed
for the analysis of darkspace data and the detection of events of interest. Packets are
usually first classified into subgroups. Then each subgroup is processed to extract
the required information.

3.1 Packet Classification

Some basic analysis can be done by just observing the total packet count of the
packets in darkspace. But more sophisticated analysis efforts require the classifi-
cation of observed packets into subgroups. Classification requires the inspection of
packet header fields, packet payload or packet arrival times. Most commonly used
classification rules are based on IP addresses, protocol, port numbers and TCP flags.

Scanning software often uses TCP SYN packets but also UDP packets are used
to scan the network. Typical backscatter packets are TCP SYN-ACKs or TCP RST
packets that are sent as response to TCP-SYN packets. Also ICMP response packets
as answer to ICMP echo requests and other packet types can be seen. [20] and [18]
contain an overview of different backscatter packet types that can be observed in
IP darkspaces.

Also the investigation of other fields make sense. The time-to-live (TTL) value
provides hints about the operating systems that runs on the machine that sent

24 Tanja Zseby

the packets [22]. For the investigation of network outages, it is useful to classify
darkspace traffic based on the geolocation of hosts [10].

Building meaningful classes can result in quite complex rules. The iatmon tool
introduced in [6] provides a special software for monitoring one-way traffic. It clas-
sifies darkspace traffic into 14 different source categories. It identifies backscatter
traffic, vertical and horizontal scanning as well as probe traffic. The tool also ana-
lyzes packet inter-arrival times (IATs) to distinguish high-rate and low-rate sources
and detect stealth scanning.

3.2 Packet and Byte Counts

The overall packet count is an indicator for increasing or decreasing overall traffic
in the darkspace. It allows a first assessment whether something unusual is going
on. A significant drop of the overall packet count can indicate an end of a large
attack or severe network problems somewhere in the Internet.

Byte counts usually correlates with the packetcount. If byte counts increase while
the packet count remains constant, packet sizes have increased. This may be caused
by an increase of packets that contain malicious code in their payload. But also
other reasons like misconfigurations can contribute to larger packetsizes. Overall
packet and byte counts provide only very coarse grained information about changes
in the darkspace traffic. More sophisticated analysis requires the classification of
packets as described in section 3.1.

Packet and byte counts per traffic class reveal what kind of traffic increase. With
this one can detect new malicious activities. An increase of the number of scanning
packets to a specific port may reveal a new vulnerability. An increase of backscatter
traffic can indicate that new DDoS attacks with randomly spoofed addresses are
active.

3.3 Time Series Analysis

The detection of interesting activities in darkspace data requires the analysis of the
temporal evolution of selected metrics. Different methods can be used from time
series and trend analysis or change point detection. Time intervals for the analysis
need to be chosen in accordance to the observed metric and expected dynamics.

The authors of [3] use the cumulated sum (CUSUM) algorithm to detect changes
in statistical properties of the overall packet count from a darkspace monitor. They
also propose to use a dynamic sliding window to automatically detect nested changes
caused by overlapping anomalies. In [12] temporal and spatial correlations of time
series of unwanted traffic are investigated. The authors look for long range depen-
dencies in darkspace data and get different results for UDP and TCP darkspace
traffic.

IP Darkspace Analysis 25

3.4 Feature Distributions

The investigation of feature distributions requires packet classification based on the
feature of interest as shown in section 3.1 . The analysis of feature distributions
can be combined with a filtering to narrow the scope of the analysis.

Darkspace traffic often originates from processes that use randomly chosen ad-
dresses and port numbers (e.g. scanning) or that target a specific address or ports
(e.g. DDoS). Therefore IP address and port number distribution can reveal useful
information. The increase of traffic to a specific port can provide information about
a new vulnerability. The sudden occurrence of many new source IPs can be caused
by a botnet or address spoofing.

One metric of interest that has been widely used in darkspace analysis is the
number of unique source IP addresses. During the conficker outbreak in 2008 a
sudden increase of unique source IPs could be observed that sent packets to port
445 [1].

The analysis of destination IP distributions from scanning traffic can also provide
information about attack tools. It can be seen if those tools use random scanning
within a subnet and whether random source ports are used for attack packets.
Darkspace analysis reveal specific patterns of scanning software that is useful to
identify those tools. For instance in [1] it is shown that only 1/4 of the addresses
in the darkspace are scanned by conficker. This behavior is probably the result of a
bug in the random number generation in the Conficker scanning software.

A nice summary metric to capture the concentration or dispersion in distribu-
tions is the sample entropy. Some large events in darkspace can be identified by just
looking at the entropy instead of investigating the whole distribution [23].

Figure 2 shows the entropy analysis of data from a large /8 darkspace at the
University of California, San Diego (UCSD). The graph shows data observed in
February 2012. The diagrams show the total number of packets (lowest, chart 4),
the number of backscatter packets in accordance to classification rules in the iatmon
tool (chart 3), the entropy of the source and destination IP addresses H(sIP), H(dIP)
(chart 1) and the source and destination port numbers H(sPort), H(dPort)(chart 2).
It clearly can be seen how changes in backscatter data influence the sample entropy
of address and port number distributions.

When the amount of backscatter traffic increases we see a significant drop in the
source port entropy. That means that in the port distribution a specific port sticks
out. This is the port that was used by the attacks that caused the backscatter data.
We also see a decrease of H(sIP), due to specific hosts that are sending backscatter
data. The destination port entropy H(dPort) increases, due to the use of random
source ports by the attack tool.

The entropy H(dIP) of the destination addresses is already very high, because
most of the dark addresses receive traffic. So we do not see any significant changes
due to additional backscatter traffic.

26 Tanja Zseby

Fig. 2. Entropy and Backscatter

Besides addresses and port also the distribution of other metrics is of interest. In
[6] the distribution of packet inter-arrival times per source group is used to identify
stealth and slow attacks. In [22] the distribution of TTL values is used to investigate
what operating systems contribute to darkspace traffic.

3.5 Further Techniques

Most techniques used for general network traffic analysis can also be applied to
darkspace traffic. A detailed analysis is often done manually after some unusual
patterns have been detected by automatic methods. Apart from time series analysis
and distributions also the power spectrum of darkspace metrics has been investi-
gated. The authors in [13] use power spectrum and detrended fluctuation analysis to
look for long range dependencies. They also propose a 3D visualization of addresses
and port numbers to assist in detecting unusual events. Also the combination of
techniques makes sense. [19] describes the estimation of number and intensity of
DoS attacks in the Internet based on the analysis of backscatter data. The authors
group the observed packets into flows based on destination IP and protocol and
then investigate TCP flags and ICMP payload per flow. They check if the assump-
tion of randomly spoofed addresses holds by checking the uniformity of addresses
distribution of observed packets using the Anderson Darling test statistic.

IP Darkspace Analysis 27

4 Darkspace Structures

Setting up a darkspace is not very difficult if an appropriate address space is avail-
able. [5] describes a darkspace setup and lessons learned from darkspace operation.
But IPv4 addresses are a scarce resource. We expect that in future only few orga-
nizations can afford to spare large IPv4 address spaces for operating a darkspace.
We then will probably see more distributed forms of darkspaces that consist of
combinations of smaller darkspaces or combine darkspace with lightspace networks,
which contains active hosts. We can distinguish the following structures:

– Distributed Darkspaces: Instead of operating one large darkspace multiple smaller
dark address blocks are combined.

– Greyspaces: Most networks have some dark spots in form of unused IP addresses
or unused ports. Monitoring traffic to those addresses and ports in otherwise used
subnets is useful to detect unusual activities.

– Dynamic Darkspaces: Darkspace in which IP addresses are temporarily used.
Addresses are temporarily light up by connecting an active host.

The combination of data from multiple distributed darkspaces is useful to in-
vestigate the global distribution, scope and development of large events. Using dis-
tributed small darkspace also provides a higher address diversity. Combining dark-
space data with other sources, e.g., from lightspace, honeynets or intrusion detection
systems helps to get further insight into incidents.

The Internet Motion Sensor Architecture ([8], [4], [9]) is a distributed darkspace
that consists of darkspace monitors at different networks. The architecture contains
some lightweight responders in order to extract more information from malware
sources.

The authors of [12] investigate the spatial correlation between two adjacent
address blocks. Their results show that TCP SYN traffic time series shows spatial
correlation in of packets arrivals between two neighboring address blocks.

But combining small fractions of distributed dark address spaces introduces new
challenges for inferring size and scope of attacks. Furthermore, some synchroniza-
tion is required to correctly correlate events from different locations. The clocks
of the involved measurement devices should be synchronized. Analysis intervals,
classification rules and analysis techniques should be the same.

If darkspace data is shared among different organizations it may be needed to
remove sensitive information first. For instance backscatter traffic contains the IP
addresses of vulnerable/attacked hosts and therefore contains critical information
that should not be revealed to others.

Greyspace analysis [14] may become more popular in future. Most networks have
some dark spots in form of unused IP addresses that can be utilized for darkspace
analysis purposes. The presence of active hosts in the same local network will prob-
ably direct more traffic of interest to greyspaces than to a completely dark network

28 Tanja Zseby

of the same size. A nice technique is also to introduce a few light responders to the
network that act as honeypots to gather further details about onging attacks.

In dynamic darkspaces, addresses become temporarily active. The authors of
[17] report results from a dynamic darkspace. They show that after lightening up
one host, the vast majority of the traffic was directed to that host. This behavior
continued even after they darkened the address again.

4.1 Darkspace analysis in IPv6 networks

A main feature of IPv6 is its much larger address space compared to IPv4. An
IPv6 address consist of 128 bit. In most cases the last 64 bit of an IPv6 address
are used to address a host (or interface) within a network [15]. The huge IPv6
address space gives us plenty of networks and addresses within a network to be
used as dark spaces. But due to the huge address space of 264 potential addresses
(instead of 28 addresses in an IPv4 subnet), random scanning of an IPv6 network
becomes impractical. Assuming that scanning 28 addresses takes 1 minute, scanning
264 addresses takes 256 times longer which leads to approximately 140 billion years.

Nevertheless, this IPv6 advantage only applies if addresses within a subnet are
really assigned randomly and attackers cannot gain information about active ad-
dresses from other sources. Any structured numbering of hosts makes it easier for
an attacker to guess or deduce active IPv6 addresses. The use of stateless autocon-
figuration based on MAC addresses makes it even worse. The address then include
the vendor IDs which that can be easy to guess.

New IPv6 scanning methods are discussed in [7]. Due to the different scanning
strategies for IPv6, purely random scanning is much less likely to occur in IPv6
networks. We expect to see not much activities from process that use random ad-
dresses in IPv6 darkspaces. This reduces the usability of darkspace traffic for attack
detection and malware analysis immense. IPv6 darkspaces have been investigated
in [11] and [16]. Both show only very few activities from malicious activities in IPv6.

Nevertheless, it can make sense to use specifically crafted darkspace structures
in IPv6. One option is to leave a few addresses dark when assigning IP addresses
in a continuous scheme. This would provide information about scanning activities
in the network after attackers gained insight into the addressing scheme.

References

1. Emile Aben. Conficker/Conflicker/Downadup as seen from the UCSD Network Telescope. Technical
report, CAIDA, February 2009.

2. Ejaz Ahmed, Andrew Clark, and George Mohay. Characterising Anomalous Events Using Change -
Point Correlation on Unsolicited Network Traffic. In Audun Jøsang, Torleiv Maseng, and Svein Johan
Knapskog, editors, Identity and Privacy in the Internet Age, volume 5838, pages 104–119. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2009.

IP Darkspace Analysis 29

3. Ejaz Ahmed, Andrew Clark, and George Mohay. Effective Change Detection in Large Repositories of
Unsolicited Traffic. In Fourth International Conference on Internet Monitoring and Protection, 2009.
ICIMP ’09, pages 1–6. IEEE, May 2009.

4. Michael Bailey, Evan Cooke, Farnam Jahanian, Jose Nazario, and David Watson. The Internet Motion
Sensor: A Distributed Blackhole Monitoring System. In Proceedings of Network and Distributed System
Security Symposium (NDSS 05), pages 167—179, 2005.

5. Michale Bailey, Evan Cooke, Farnam Jahanian, Andrew Myrick, and Sushant Sinha. Practical Darknet
Measurement. In 2006 40th Annual Conference on Information Sciences and Systems, pages 1496–
1501. IEEE, March 2006.

6. Nevil Brownlee. One-way Traffic Monitoring with iatmon. In 13th Passive and Active Measurement
Conference (PAM 2012), 2012.

7. Tim Chown. IPv6 Implications for Network Scanning. RFC 5157 (Informational), March 2008.
8. Evan Cooke, Michael Bailey, Z. Morley Mao, David Watson, Farnam Jahanian, and Danny McPherson.

Toward understanding distributed blackhole placement. In Proceedings of the 2004 ACM workshop
on Rapid malcode, WORM ’04, page 54–64, Washington DC, USA, 2004. ACM. ACM ID: 1029627.

9. Evan Cooke, Michael Bailey, David Watson, Farnam Jahanian, and Jose Nazario. The Internet Motion
Sensor: A Distributed Global Scoped Internet Threat Monitoring System. Technical report, Electrical
Engineering and Computer Science Department, University of Michigan, 2004.

10. Alberto Dainotti, Claudio Squarcella, Emile Aben, Kimberly C. Claffy, Marco Chiesa, Michele Russo,
and Antonio Pescapé. Analysis of Country-wide Internet Outages Caused by Censorship. In Pro-
ceedings of the 2011 ACM SIGCOMM Conference on Internet Measurements (IMC), IMC ’11, pages
1–18, New York, NY, USA, 2011. ACM.

11. Matthew Ford, Jonathan Stevens, and John Ronan. Initial Results from an IPv6 Darknet. Internet
Surveillance and Protection, International Conference on, 0:13, 2006.

12. Kensuke Fukuda, Toshio Hirotsu, Osamu Akashi, and Toshiharu Sugawara. Correlation Among Piece-
wise Unwanted Traffic Time Series. In IEEE Global Telecommunications Conference, 2008. IEEE
GLOBECOM 2008, pages 1–5. IEEE, December 2008.

13. Uli Harder, Matt W Johnson, Jeremy T Bradley, and William J Knottenbelt. Observing Internet
Worm and Virus Attacks with a Small Network Telescope. Electron. Notes Theor. Comput. Sci.,
151(3):47–59, June 2006. ACM ID: 1706686.

14. Warren Harrop and Grenville Armitage. Defining and Evaluating Greynets (Sparse Darknets). In
The IEEE Conference on Local Computer Networks, 2005. 30th Anniversary, pages 344–350. IEEE,
November 2005.

15. Robert M. Hinden and Stephen E. Deering. IP Version 6 Addressing Architecture. RFC 4291 (Draft
Standard), February 2006. Updated by RFCs 5952, 6052.

16. Geoff Huston. IPv6 Background Radiation. In North American Network Operators Group Meeting
(NANOG 50), October 3-6 2010.

17. Jeff Janies and Michael Patrick Collins. Darkspace Construction and Maintenance. In CERT FloCon
2011 Proceedings, Salt Lake City, UT, January 2011. CERT.

18. David Moore, Colleen Shannon, Douglas J Brown, Geoffrey M Voelker, and Stefan Savage. Inferring
Internet denial-of-service activity. ACM Trans. Comput. Syst., 24(2):115–139, May 2006. ACM ID:
1132027.

19. David Moore, Geoffrey M. Voelker, and Stefan Savage. Inferring Internet Denial-of-Service Activity’.
In Proceedings of the 2001 USENIX Security Symposium, Washington D.C., pages 9–22, August 2001.

20. Ruoming Pang, Vinod Yegneswaran, Paul Barford, Vern Paxson, and Larry Peterson. Characteristics
of Internet Background Radiation. In Proceedings of the 4th ACM SIGCOMM conference on Internet
measurement, IMC ’04, page 27–40, Taormina, Sicily, Italy, 2004. ACM. ACM ID: 1028794.

21. Songjie Wei and Jelena Mirkovic. Correcting Congestion-based Error in Network Telescope’s Ob-
servations of Worm Dynamics. In Proceedings of the 8th ACM SIGCOMM Conference on Internet
measurement (IMC 2008), IMC ’08, pages 125–130, New York, NY, USA, 2008. ACM.

22. Eric Wustrow, Manish Karir, Michael Bailey, Farnam Jahanian, and Geoff Huston. Internet back-
ground radiation revisited. In Proceedings of the 10th annual conference on Internet measurement,
IMC ’10, page 62–74, Melbourne, Australia, 2010. ACM. ACM ID: 1879149.

23. Tanja Zseby. Entropy in IP Darkspace Data. In CERT FloCon 2012 Proceedings, Austin, TX, January
2012. CERT.

Flow Data Collection in Large Scale Networks

Pavel Čeleda1 and Vojtěch Krmı́ček2

1 Masaryk University, Institute of Computer Science
Botanická 68a, 602 00 Brno, Czech Republic

celeda@ics.muni.cz
2 CESNET, z.s.p.o.,

Zikova 4, 160 00 Prague, Czech Republic,
krmicek@cesnet.cz

Abstract. In this chapter, we present flow-based network traffic monitoring of large scale
networks. Continuous Internet traffic increase requires a deployment of advanced monitoring
techniques to provide near real-time and long-term network visibility. Collected flow data
can be further used for network behavioral analysis to indicate legitimate and malicious
traffic, proving cyber threats, etc. An early warning system should integrate flow-based
monitoring to ensure network situational awareness.

1 Introduction

Detailed traffic statistics are necessary to provide a permanent network situational
awareness. Such statistics can be complete packet traces, flow statistics or vol-
ume statistics. A trade-off must be chosen between computational feasibility and
provided level of information to efficiently handle high-speed traffic in large scale
networks.

– Full packet traces traditionally used by traffic analyzers provide most detailed
information. On the other hand the scalability and processing feasibility for
permanent traffic observation and storing in high-speed networks is an issue
including high operational costs.

– Flow statistics provide information from Internet Protocol (IP) headers. They
do not include any payload information, however we still know from IP point of
view who communicates with whom, which time, etc. Such approach can reduce
up to 1000 times the amount of data necessary to process and store. Using flow
we are able even to monitor encrypted traffic.

– Volume statistics are often easy to obtain in form of Simple Network Man-
agement Protocol (SNMP) data. They provide less detailed network view in
comparison with flow statistics or full packet traces and do not allow advanced
traffic analysis.

We use flow data for their scalability and ability to provide a sufficient amount of
information. Flow-based monitoring allows us to permanently observe both small
end-user networks and large National Research and Education Network (NREN)
backbone links.

Flow Data Collection in Large Scale Networks 31

2 Flow-Based Monitoring

Measurement of IP flow statistics was first introduced by Cisco Systems [2] in 1996.
NetFlow protocol introduced de facto standard for today’s flow monitoring. NetFlow
is used to export flow information from so called exporter to collector. The flow is
defined as a sequence of consecutive packets with the same IP addresses, ports and
protocol number.

NetFlow is traditionally used for routing optimization, application troubleshoot-
ing, traffic mix monitoring, accounting and billing, and others. Besides these running-
up applications new utilization attracts the attention including detection of security
incidents and Denial of Service (DoS) attacks, already embedded in some collectors.
Network Behavior Analysis (NBA) is an alternative flow-based approach to tradi-
tional pattern matching to detect cyber threats, e.g. Advanced Persistent Threats
(APT).

2.1 Definition of IP Flow

In general, flows are a set of packets which share a common property. The most
important such properties are the flow’s endpoints. The simplest type of flow is
a 5-tuple, with all its packets having the same source IP address, destination IP
address, port numbers, and protocol (see Figure 1). Flows are unidirectional and all
their packets travel in the same direction. The flow begins when its first packet is
observed. The flow ends when no new traffic for existing flow is observed (inactive
timeout) or connection terminates (e.g. TCP connection is closed). An active time-
out is time period after which data about an ongoing flow are exported. Statistics
on IP traffic flows provide information about who communicates with whom, when,
how long, using what protocol and service and also how much data was transferred.

3 Flow Exporters

NetFlow can be enabled on routers which constitute primary source of NetFlow
data today. On the other hand utilization of standalone dedicated systems such as
dedicated probes seems to have several benefits. Offloading of resource intensive
flow measurement to dedicated probe is probably the most important one. When
NetFlow is enabled the routers often suffer of huge system load. Dedicated probe
allows routers to perform their primary task, i.e. to route packets and keep mission
critical applications up and running. A wide variety of network devices are capable
of generating flow. We mention three basic categories of flow exporters:

– Routers, switches, and firewalls observe all traffic going through the network.
They are in a unique position to generate detailed flow data. However, in some
environments (e.g. on high-speed backbones) they are not able to process all

32 Pavel Čeleda, Vojtěch Krmı́ček

Fig. 1. The IP flow statistics describing endpoints communication.

packets. So sampled NetFlow was introduced by Cisco. When sampling is used
only one packet out of n is processed. The flow data are less accurate and a
further flow processing can be affected e.g. sampling effect on anomaly detection
methods.
Many vendors provide an equivalent to Cisco NetFlow technology on their de-
vices, however some of them use a different name for it, e.g. jflow, clowd, Net-
Stream. The flow support is implemented in software (lower performance, sam-
pling required) or in dedicated hardware (high performance, some flow elements
may be missing e.g. TCP flags).

– Dedicated flow probes were developed to overcome limitations (costs, availabil-
ity, and functionality) of router based flow exporters. The most well known
exporters include nProbe, yaf, and FlowMon. They are typically implemented
as open-source software (Linux, BSD) using commodity hardware (server, net-
work interface cards). The probes use kernel TCP stack bypass to process more
traffic in comparison to standard Packet Capture (PCAP) interface. Further
the Receive-Side Scaling (RSS) is used to distribute network traffic to multiple
cores. To achieve line-rate processing the hardware acceleration is used. There
are special Field-Programmable Gate Array (FPGA) based cards.
Test Access Port (TAP) devices or Switched Port Analyzer (SPAN) ports must
be used to provide input for probes. TAP devices are non-obtrusive and are not
detectable on the network. They send a copy (1:1) of all network packets to a
probe. In case of failure the TAP has built-in fail-over mode. The observed line
will not be interrupted and will stay operational independent on any potential
probe failure.

Flow Data Collection in Large Scale Networks 33

In case of SPAN, we must enable the port mirroring functionality on a router/switch
side to forward network traffic to monitoring device. However, we must take in
count some SPAN port limits. Detailed comparison between using TAP devices
or SPAN ports is described in [9].

– Virtual flow probes are special case of dedicated probes. They are used in virtu-
alized environments, to monitor the traffic passing through a virtual switch or
a virtual TAP. They are available as a virtual appliance.

3.1 Flow Export Formats

Several NetFlow versions were introduced by Cisco. The most common are version
5 and version 9. NetFlow version 5 uses fix data format and is restricted to IPv4
flows. NetFlow version 9 [4] introduced templates to describe flow data. Version 9
supports IPv6, MPLS, VLANS, and MAC addresses.

NetFlow version 9 was the basis for Internet Protocol Flow Information eXport
(IPFIX) [5]. IPFIX is developed and promoted by Internet Engineering Task Force
(IETF). It provides a standard for IP flow information from routers, probes, and
other devices. There is still (as of 2012) low IPFIX support, especially advanced
IPFIX functions are missing. Most implementations support only NetFlow version
9 subset in IPFIX protocol.

3.2 Flow Application Extensions

Flow data provide information from data link layer (L2), network layer (L3), and
transport layer (L4) of Open Systems Interconnection (OSI) model. It is no longer
possible to rely on port numbers to identify applications. Typically HTTP traffic
(TCP port 80) can pass through most firewalls and presents a way how to tunnel
data. HTTP became the new Transmission Control Protocol (TCP) and a traffic
passing over HTTP must be inspected.

The application visibility is crucial to prevent all kind of unwanted traffic. IPFIX
provides Enterprise Information Elements to store application layer (L7) informa-
tion. AppFlow [3] is an example how to describe the actual applications in use
within the flow. Similar functionality provides Cisco NBAR with Flexible NetFlow,
Palo Alto firewalls, and other application-aware flow exporters.

4 Flow Collectors

IP flow generation represents first important step to be able to monitor a large
scale network. Once we are able to export flow data from the particular metering
points in the network, next step is to collect it, store it and provide suitable tools
for further flow data analysis. In this part, we present current approaches to storing
IP flow data and discuss frequently used operations needed during data analysis.

34 Pavel Čeleda, Vojtěch Krmı́ček

4.1 Flow Collectors in General

The main role of collector is to store flow data for prospective further analysis.
Beside this, there is a couple of other features and roles, which should be imple-
mented at the collector side to provide full support for network administrator work,
including further manipulation with the data like flow listing, flow filtering, flow
aggregation and also support for automatic flow data analysis.

There is a large number of existing collectors available to install and deploy. We
can choose either commercial solution with full technical support or decide to use
open-source project with technical support usually provided by collector community.
There are a number of open-source collectors with wide spectrum of features, large
user community and active development. We suggest choosing some of these open-
source projects. In the following, we will illustrate collector features on the NetFlow
Sensor (NfSen) example [7], used in our backbone and campus network.

The main challenge collectors are facing to, is a storing and processing of a large
amount of IP flows. With the increasing speeds of modern computer networks, this
amount is growing up and the requirements for data storage are demanding. Five
minutes of IP flow data from the backbone 10Gbps link with halfway load represents
e.g., five billions of flows to store. Therefore we are not able to store full IP flow
data in long term history and we need to replace the old data with a new one after,
e.g., a couple of months. There are several ways how to reduce the amount of flows,
but all these approaches (sampling, data aggregation) led to losing some amount of
information contained in full flow data.

To be able to cope with this huge amount of flow data, the collector has to have
an effective data storage back-end. The manipulation with the stored flow data
should provide fast methods how to search/filter flow data and these tasks become
nontrivial with the huge amounts of flows. We can see basically two types of data
storage for flow data:

– Relation database (SQL) approach – advantages of this approach are well-known
database mechanisms with full support for querying, searching, and indexing.
Contrary to this support, this type of databases was not designed to work with
such huge amounts of data. If we use this solution in backbone network, we
will face non-trivial problems with the size of database, huge times needed for
database reorganization, querying, making indexes, integrity, etc. Therefore this
type of flow data storing is suitable for the smaller networks.

– Flat file approach – in this case, the IP flow data are stored in files and dumped
directly to the disk. This approach is suitable for storing large amounts of flow
data. It does not need any further maintenance and does not consume too much
processing power. On the other hand, we need to access such data sequentially
and there are usually no indexes and metadata over such files. However in the
case of flow collection from large networks, this approach represents more effec-
tive approach compared to SQL approach (see [8]).

Flow Data Collection in Large Scale Networks 35

Supported format of exported flow data differ in various collectors. We can see
support of NetFlow version 5 and also NetFlow version 9 in majority of collectors.
However, there are sometime problems with full support of template mechanism
used by NetFlow v9. As discussed in Section 3.1 on page 33, the IPFIX format will
substitute current NetFlow v5/v9 formats, but its support in currently used flow
collectors is problematic due to the large possibilities of IPFIX format extendability.

4.2 Processing Data with Flow Collector

In the following, we describe the most frequent operations performed with flow
data at the collector side by network administrator. We identify a number of stan-
dard tasks performed with flow data and illustrate them on the example of NfSen
collector.

Data Storage and Redistribution The first step performed by each collector
is to acquire flow data from the network and consequent storing to the disk. De-
pending on the type of data storage system, there could be performed further data
reorganization, redistribution, etc. In the case of NfSen collector, we can define a
various parameters, e.g., where to store data, how long should be time window for
storing data and where to replicate an identical copy of flow data acquired from
network. Also we can define, what extensions to NetFlow v9 we want to store, e.g.,
VLAN IDs, AS numbers, MAC addresses, etc.

Command Line Interface Once we have stored flow data from the network at
the collector side, we need to perform its analysis. For this purpose, collectors have
command line interface (CLI), web front-end or both, providing the access to the
flow data. Typically, we need to perform one or more of the following actions:

– List flows – we need to see flows itself, with all information stored inside them.
A possibility to define output format of flows – which fields from flow we want to
list – would help in the flow analysis. NfSen collector supports CLI flow analysis
with fully configurable output format.

– Filter flows – filtering is used very often to find out particular IP addresses or
communication in the network. For this case, the collectors have defined filtering
syntax, which should provide a possibility to filter out flows satisfying various
conditions, or in the case of SQL collectors, we use SQL queries. NfSen collector
provides syntax similar to Berkeley Packet Filter (BPF) with various filtering
possibilities. Also the time needed to obtain corresponding flows is crucial for
efficient work with collector.

– Flow aggregation – possibility to aggregate flows by various fields is used often to
obtain overview of the network traffic in monitoring network (e.g., aggregation
by ports, subnets/IP addresses, protocols, etc.).

36 Pavel Čeleda, Vojtěch Krmı́ček

– Top talkers – this function provide a quick overview of the most active hosts in
network and can be used for revealing possible attackers/victims.

Web Interface Although CLI provides detailed access to the flow data, it does
not contain any graphical representation of the data. Therefore, collectors usually
dispose with graphical front-end, representing network traffic in the form of graphs.
Network administrator is able to see any outages or discrepancies in the observed
network easily in the graphs, compared to the CLI.

In case of NfSen collector, there is a variety of graphs representing flow data
from different views (by protocols and for different time periods) and also it provides
direct access through the web interface to the flow data. Therefore, once network
administrator identifies a network problem in the graph, she can directly list flows
corresponding to this issue and perform further analysis.

Beside the standard set of graphs, NfSen collector provides also a possibility to
define profiles. Profiles are defined by the flow data sources and filters applied to
them. As a result, corresponding data matching the filter are stored separately and
new graphs are generated. Using this feature, we are able to define profiles for e.g.,
various services or types of traffic (HTTP, DNS, routing data, etc.) in the network
and we can inspect it separately.

Automatic Flow Data Processing Beside the basic flow data storing and list-
ing/displaying/filtering, the collectors provide tools for automatic flow data pro-
cessing. Therefore, network administrator doesn’t have to check manually all the
data, but he can define various conditions or use automatic analysis methods to
inspect current flow data and in the case of some attack or discrepancy, an alarm
can be triggered automatically.

NfSen collector provides alerting tool, with the possibility to define various
conditions and also consequent actions (sending email, starting particular plugin).
Therefore, the network operator can be noticed automatically about, e.g. network
outages.

Extension Possibilities Although flow collectors have a lot of functionality in-
tegrated inside, we need to perform some customized post processing of flow data
often. For this reason, the extension interface providing standardized access to the
flow data can be used with advantage. NfSen collector provides well defined inter-
face for adding new plugins, which are able to analyse flow data stored by collector,
perform further processing and also display results through the standard collector
web interface.

Flow Data Collection in Large Scale Networks 37

5 Monitoring Use Cases

In this part, we describe two large scale networks (i) campus network of Masaryk
University and (ii) the backbone network of CESNET [1]. We show differences
between these two networks, consisting mainly in the type of a monitored traffic. In
the case of campus network, we monitor the traffic ending or originating inside the
network. In the case of backbone network, we are monitoring transit traffic going
through the network. Due to these differences, we would also obtain different flow
data and we should deploy different configurations of flow monitoring system.

5.1 Campus Network

In this scenario, we show campus network containing about 15 000 networked hosts.
The Internet connection is realized through two 10Gbps links. One part of traffic
does not leave the campus network itself, because it is targeted to the other hosts
inside the network. Other part is incoming and outgoing traffic routed to CESNET
(public Internet).

Internet

Faculty
A

Faculty
B

Faculty
C

Faculty
D

Faculty
E

Campus
Network

Firewall

FlowMon Probe FlowMon Probe

���� ����

TAP

FlowMon Probe

Fig. 2. Flow probes deployment in the campus network.

Figure 2 illustrates possible deployment of flow probes in the campus network.
One probe is deployed to monitor traffic at the border of the campus network.
Analysing this type of traffic, we are able to disclose e.g., security incidents and
attacks against campus network and also malicious traffic and attacks going from

38 Pavel Čeleda, Vojtěch Krmı́ček

campus network to the Internet. We used flow analysis to reveal previously un-
known Chuck Norris botnet [6] attacking poorly configured embedded devices (see
Figure 3).

 0

 100000

 200000

 300000

 400000

 500000

Oct 1 Nov 1 Dec 1 Jan 1 Feb 1 Mar 1 Apr 1
 0

 500

 1000

 1500

 2000

 2500

T
e
ln

e
t
S

c
a
n
 A

tt
e
m

p
ts

U
n
iq

u
e
 A

tt
a
c
k
e
rs

Telnet Scan Attempts Unique Attackers

Fig. 3. Unique attackers and attacks on TCP port 23 in the campus network.

Further the probes are deployed between particular campus faculties, monitoring
the traffic generated inside the network and transferred among the campus hosts.
Analysing this type of traffic, we are able to observe amount of traffic transferred
between particular parts of campus, the load of network links in campus networks
and also security incidents inside the campus network.

The list of situations monitored by network administrators includes: security
incidents, state of particular network services, network load at the particular parts
of campus network, user statistics and accounting, etc.

5.2 Backbone Network

The second scenario demonstrates the large backbone network of CESNET inter-
connecting academic and research institutions in Czech Republic. The majority
of network traffic is transit traffic, going through the backbone network to other
destination and not ending here.

Figure 4 illustrates a deployment of dedicated flow probes (FlowMon) in this
type of network. We deploy flow probes connected via TAP devices at all 10Gbps
links providing connection to foreign countries and one probe inside the backbone
network. Therefore we are able to inspect both the traffic incoming and outgoing
from the foreign networks and also traffic originating in the domestic networks.

Analysis of backbone data is focused on different aspects. In this case, we are
interested in the amounts of the network traffic transferred between particular net-
works and to/from foreign countries. Also the monitoring of link outages and rout-

Flow Data Collection in Large Scale Networks 39

USA
TELIA

Polland
PIONEER

Slovakia
SANET

Austria
ACONET

Europe
GÉANT

Netherlands
AMS-IX

Sl

CZ
NIX
CC

Fig. 4. Map of the Czech Republic with the FlowMon probes deployment in the CESNET’s backbone
network. Probes are monitoring international 10Gbps links.

ing traffic could help network administrators. The monitoring of large scale security
incidents is important too.

Figure 5 represents one week traffic observed at SANET link to Slovakia. We
monitor both traffic directions (from abroad to backbone network and vice versa).
There are remarkable diurnal and weekly patterns - lower traffic on weekend and
the maximum load of network during Wednesday and Thursday.

-10000

-5000

0

5000

10000

15000

20000

Mon Tue Wed Thu Fri Sat Sun Mon

Fl
ow

s/
s

SANET SK → CZ SANET CZ → SK

DoS attack
UDP flood

DDoS attack
TCP SYN flood

SSH horizontal
scanning

Fig. 5. Diurnal traffic pattern and four security incidents in the SANET 10Gbps link interconnecting
Czech Republic and Slovakia – time window April 23-30, 2012.

Besides the diurnal and weekly patterns, we can observe four massive security
incidents at the Figure 5. First one represents massive DoS attack (UDP flood
consisting of 6.3M flows) launched from Slovakia against a university in the Czech
Republic. Next attack is a large distributed DoS (DDoS) attack against public web

40 Pavel Čeleda, Vojtěch Krmı́ček

hosting provider consisting of 2.9M attacker flows. Two another serious security
issues follow – massive SSH scans consisting of 4.3M and 1.9M flows originating
at Slovakia high school and targeting more than 5M possible victims worldwide.
Although these massive incidents are easily detectable, majority of network attacks
and malicious activities are not so intensive and therefore we need to perform ad-
vanced analysis of flow data to be able to reveal them.

6 Summary

This chapter gave an overview about flow monitoring in large scale networks. We
described flow exporters, data export formats, and flow collectors. Two use cases
showed today’s deployment of flow-based monitoring in campus and backbone net-
work. We also showed flow data of botnet malicious activity and various attacks at
international backbone link.

References

1. CESNET: Czech National Research and Education Network operator, http://www.ces.net/, 2012.
2. Cisco: Cisco IOS NetFlow, http://www.cisco.com/go/netflow, 2012.
3. Citrix: AppFlow Specification, http://www.appflow.org/, 2012.
4. Claise, B.: Cisco Systems NetFlow Services Export Version 9. RFC 3954 (Informational), IETF, 2004.

http://www.ietf.org/rfc/rfc3954.txt

5. Claise, B.: Specification of the IP Flow Information Export (IPFIX) Protocol for the Exchange of IP
Traffic Flow Information. RFC 5101 (Proposed Standard), IETF (2008). http://www.ietf.org/rfc/
rfc5101.txt

6. Čeleda, P., Krejč́ı, R., Vykopal, J., Drašar, M.: Embedded Malware – An Analysis of the Chuck Norris
Botnet. In: Proceedings of the 2010 European Conference on Computer Network Defense, Berlin, 2010.

7. Haag, P.: NfSen – NetFlow Sensor, http://nfsen.sourceforge.net/, 2012.
8. Hofstede, R., Sperotto, A., Fioreze, T., Pras, A.: The Network Data Handling War: MySQL vs. Nf-

Dump. 16th EUNICE/IFIP WG 6 6 Workshop (EUNICE 2010), Trondheim, 2010.
9. Zhang, J., Moore, A.: Traffic trace artifacts due to monitoring via port mirroring. In Proceedings of

the Fifth IEEE/IFIP E2EMON, pages 1-8, 2007.

Flow-based Brute-force Attack Detection

Martin Drašar1, Jan Vykopal1, and Philipp Winter2

1 Masaryk University, Institute of Computer Science
Botanická 68a, 602 00 Brno, Czech Republic

{drasar,vykopal}@ics.muni.cz
2 Karlstad University, Department of Computer Science

Universitetsgatan 2, 651 88 Karlstad, Sweden
philipp.winter@kau.se

Abstract. Brute-force attacks are a prevalent phenomenon that is getting harder to suc-
cessfully detect on a network level due to increasing volume and encryption of network traffic
and growing ubiquity of high-speed networks. Although the research in this field advanced
considerably, there still remain classes of attacks that are hard to detect. In this chapter,
we present several methods for the detection of brute-force attacks based on the analysis of
network flows. We discuss their strengths and shortcomings as well as shortcomings of flow-
based methods in general. We also demonstrate the fragility of some methods by introducing
detection evasion techniques.

1 Introduction

In recent years, network security research started focusing on flow-based attack de-
tection in addition to the well-established payload-based detection approach. Instead
of only looking for malicious activity in the actual packet data, network flows are
also considered for analysis [8]. This is not surprising since the amount of data one
has to fight with is drastically reduced and the attacks visible in flow data tend to
complement the attacks that we strive to find in network payload.

In this chapter, we give a compact overview of current research in this field with
respect to brute-force attacks. We propose five detection techniques and shed light
on the shortcomings inherent to the flow-based attack detection approach.

This chapter is divided into five sections. The rest of this section highlights the
difference in attack orchestration and discusses detection in encrypted traffic. Sec-
tion 2 describes five different approaches to flow-based intrusion detection that re-
veal brute-force attacks. Limitations imposed by the nature of flows are summarized
in Section 3. Four detection evasion techniques are then outlined in Section 4. The
chapter is recapitulated in Section 5. Flow data collection in large scale networks is
extensively covered by Chapter Flow Data Collection in Large Scale Networks on
page 30.

1.1 Noisy Versus Stealthy Attacks

Attacks that occur in a network can be roughly divided into two categories, depend-
ing on their impact on traffic patterns. On the one side there are noisy attacks that

42 Martin Drašar, Jan Vykopal, Philipp Winter

disrupt these patterns significantly. One example is port scans that often precede
actual attacks [9]. Such attacks are very easy to detect since all that is needed is to
look for a sudden increase in traffic volume. Noisy attacks are useful to penetrate
networks that are not sufficiently protected and to estimate defense capabilities of
particular networks. They can also be used as a cover for stealthy attacks running
simultaneously. Any exposed network is likely to be target sooner or later, so it is
easy to gather real life examples.

On the other side, there are stealthy attacks. These attacks are much harder to
gather and examine as they by virtue try to remain undetected. Stealthy attacks
have to be crafted for a target network and must reflect its detection capabilities.
Staying under the radar also means that the attack is generally slower and that it
has to run longer.

1.2 Detection of Attacks in Encrypted Traffic

Various secured protocols, services and applications became more and more popu-
lar in recent years. Besides services such as SSH, even web applications provided
by Google or Facebook are currently accessible over HTTPS. Furthermore, user
authentication via secured communication channels is becoming a standard these
days.

With the rise of encrypted traffic, the traditional approach to network-based
intrusion detection is becoming ineffective. Packet payload which is searched for
signatures of known attacks by deep packet inspection is opaque, only packet headers
can be analyzed. Therefore, flow-based detection is one of the possible ways to deal
with encrypted traffic.

2 Detection of Brute-force Attacks

Brute-force attacks are most frequently detected at the host level by inspecting
access logs. If the predefined number of unsuccessful login attempts is reached, an
alert is fired, the attacker blocked or other attempts significantly delayed. This
approach is effective, even for distributed attacks. The main drawback is that it
does not scale well.

We present five detection approaches that profit from the scalability of network
flows. The first is a simple analogy of pattern matching known from deep packet
inspection. The second approach extends the first one by searching for similar traf-
fic instead of fixed patterns. The following two exploit periodicity and the even
distribution of attacks in time. And the last one finds abrupt changes in entropy
time series.

Flow-based Brute-force Attack Detection 43

2.1 Signature-based Approach

Similarly to pattern matching in deep packet inspection, signatures can be used
in flow-based intrusion detection too. The flow-based signatures describe network
traffic by specific values, or ranges of values, of flow features and computed statistics.
The signatures are then searched for in acquired flows. This is done in separate
time windows, typically when exported flows are sent from the collecting process
to the metering process. So this simple approach does not consider changes of the
monitored traffic in time.

Concerning brute-force attacks, the relevant signature can be comprised of fea-
tures and statistics describing both requests and replies thanks to the interactive
nature of the attacks. The requests carry attempted credentials and the replies
information about whether the login was successful or not.

Method First, the most popular attacked services such as SSH, Telnet, RDP or web
applications using HTTP or HTTPS are run on mostly well-known network ports
such as TCP/22, TCP/23, TCP/3389, TCP/80 or TCP/443. Second, the source
port of the client (attacker) request, i. e. the destination port of the reply, is usually
greater than 1024. Third, login attempts and server replies have a specific (range of)
size and duration. These characteristics can be captured by the number of packets
and bytes of a flow, its duration or statistics: packets per second, bytes per second
and bytes per packet. To sum it up, the signature of an attacker’s attempt of SSH
authentication may be defined as follows: protocol = TCP, source port > 1024,
destination port = 22, packets > 10, packets < 30, bytes > 1400, bytes < 5000,
duration < 5 s.

Next, selected features of flows matching the given signatures may be analyzed
again. For example, in order to determine the number of unique attackers and
victims (source and destination IP addresses).

Finally, the number of matching flows is counted for each attacking IP address
and if the predefined threshold is reached, an alert is fired. The threshold should
express an anomalous number of login attempts in the time window (e. g. 10 in a
5-minute time window for the sample SSH signature above).

Discussion The signatures can be implemented as a chain of filters for the nfdump
tool [3] or as a decision tree [10].

In 2010, we have deployed a simple signature for SSH attacks in the campus
network of Masaryk University to find suspicious hosts conducting SSH attacks. The
network consists of about 15 000 networked hosts with public IP addresses including
hundreds of SSH servers. The network is open and naturally attracts attackers’
attention. The signature itself matched traffic of a few thousand of attackers, but
also a few tens of possibly benign hosts from our network. These false positives were
caused mainly by hosts connected to a grid and Nagios servers. To eliminate these

44 Martin Drašar, Jan Vykopal, Philipp Winter

false positives, we employed the fact that the majority of attack flows is produced by
attackers aiming at more hosts within one attack and that the attacks are preceded
by scanning the port TCP/22 [9].

In conclusion, the signature-based approach is very straightforward, simple and
effective, but for operational use (to eliminate false positives) it is necessary to
employ other data sources supporting or contradicting the result.

2.2 Similarity-based Approach

Deriving signatures as described above is a time-consuming process. Existing sig-
natures need maintenance as tools and systems generating monitored traffic are
evolving and traffic patterns are changing. Additionally, “0-day” attacks are not
recognized. We try to address these issues by searching for similar flows instead of
matching specific signatures. We believe that the similarity of traffic can point to
machine-generated traffic, for instance brute-force attacks.

Method First, all incoming flows are clustered in a separate time window to isolated
groups of similar flows. The similarity is measured by the distance of particular
flows (points) in space defined by flow features and statistics. We need to choose a
distance metric function, its input parameters, i. e. suitable flow features and radius
used for determination if the flow (point) belongs to groups of flows (points) that are
close to each other. For example, we can define points pid representing flows in two-
dimensional space as follows: pid = (pkt, byt), where pkt is the number of packets
and byt the number of bytes in the flow, and id is a flow identification used in
further processing. The distance metric function may be, e. g., the Euclidean metric

d given by the Pythagorean formula: d(p1, p2) =
√
(pkt2 − pkt1)

2 + (byt2 − byt1)
2

and the radius a float number.
Second, we assume that flows representing malicious traffic are grouped in clus-

ters3 with a large member (point) count and flows representing benign traffic form
clusters with a low member count, because this traffic consists of flows with very
variable properties. These clusters can also be excluded from further processing.

Third, IP addresses of flows (points) within each cluster are inspected and the
type of the attack is determined. If the cluster contains randomly distributed IP
addresses, it may indicate benign traffic. On the contrary, if it is possible to find the
same source or destination addresses, it may point out to a multiple or a distributed
attack.

Finally, the IP address is classified as the attacker if it generated more than the
predefined number of flows.

Discussion This is a more generic approach and its detection capability essentially
depends on a chosen clustering algorithm and its parameters.

3 Some clusters may contain traffic generated by port scanning and some other actual password guessing.

Flow-based Brute-force Attack Detection 45

2.3 Detection of Automated Actions

Most of the brute-force attacks that we have observed in practice exhibit one simi-
larity that we attribute to their automated behavior: the intensity of an attack from
one source remains relatively constant and periodic during its course. This attribu-
tion is supported by our knowledge of available brute-forcing tools that generally
allow their users to set the attack intensity only by specifying the number of attack
tasks running in parallel.

Traffic with such property is naturally not unique to brute-force attacks —
querying the NTP server, various protocols’ keep-alives, IM, etc. behave in a similar
way — however, this communication is usually directed to well-known machines or
ports that are generally not targets of attacks. These can be thus easily discarded
beforehand.

Time Window Heuristic Detection of traffic with almost constant intensity can be
done using a simple heuristic. Any machine attacking with constant intensity and
with zero or fixed delays between attack attempts will create only slightly varying
number of flows in any two time windows. This number can be influenced by e.g.
network conditions or machine slowdowns.

Figure 1 illustrates two attacks that are both periodic and constant-intensive.
There are on average 250 attempts every 6 minutes. The burst attack does not
have fixed delays between attacks as it concentrates these attempts into the first
2.5 minutes, whereas the continuous attack distributes the attempts evenly.

The ability to identify this traffic as potentially malicious using the aforemen-
tioned heuristic largely depends on two properties of the used time windows. First,
there is a size of a time window. As can be clearly seen in Figure 1, short time
windows (dark rectangles) may be good enough to detect an attack that does not
vary much, but may fail with more complicated patterns. Longer time windows
(light rectangles) may detect even the burst attack, but may fall short for attacks
that do not last long. Second, there is the relative temporal distance of time win-
dows. Fixed distances can suffer from local non-uniformity of attack intensity when
a time window is shorter than the execution of all attack tasks running in parallel.
Random distances with potential overlapping seem like a better choice to counter
this scenario.

Fourier Transform Another approach to identify almost constant periodic traffic is
to employ methods of signal processing. The basic premise is that a network traffic
trace can be viewed as a signal that can be processed further. This approach was
already used in [2], [5] and by others to detect network anomalies. These authors
basically used signal processing methods to find deviations in traffic to identify an
attack. In this subsection we are focusing more on the problem of finding unwanted
regularities in a traffic flow to identify ongoing attacks.

46 Martin Drašar, Jan Vykopal, Philipp Winter

�
�

��
��
��
��
��
��
��
��
��
��
��
��

�	�� �	�� �	�� �	�� �	��
	�� �	�� ��	�� ��	�� ��	�� ��	�� ��	�� ��	��

��

���
��

�

��������������

���������� ! "�������������� !

Fig. 1. Visualization of two types of attacks and two possible time window settings.

A Fourier transform (FT) basically generates a frequency spectrum of a given
signal, i.e. decomposes the signal into a set of simple oscillating functions. The re-
sults of a FT show which frequency components are dominant in the signal. Figure 2
shows the result for the burst and the continuous attacks. Peaks in the burst attack
transformation point to a presence of a dominant repeating pattern, i. e. the attack.
On the other hand, a FT of a continuous attack does not reveal anything and is
akin to a FT of non-malicious traffic.

�
���
���
���
���
����

� �� �� �� �� ���
�
���

��	
������ ���������
�����

Fig. 2. Fourier transform of attacks in the Figure 1. Burst attack is offset 200 points up the y-axis for
clarity.

Discussion Both, the window heuristic and the Fourier transform allow the discov-
ery of almost constant periodic traffic that may be a symptom of an ongoing attack.
Each method fills a specific niche; the heuristic is more useful for evenly distributed
attacks, the Fourier transform for attacks with more complicated patterns.

Flow-based Brute-force Attack Detection 47

2.4 Detecting Abrupt Changes in Entropy Time Series

In [6], entropy was proposed as a metric to discover a wide range of anomalies in
flow traces. Entropy can reduce high-dimensional network traffic to a single numeric
value. While this simplification inevitably implies a loss of information, it has the
benefit of reduced computational complexity. The use of entropy makes it possible
to discover various occurrences of brute-force attacks, such as (D)DoS, large-scale
scanning activity and worm outbreaks in the observed flow traces since these types
of attack heavily modify the distribution of the underlying flow features.

Method In [11], we proposed to use the normalized Shannon entropy to form time
series for five flow features: Source and destination IP address, source and desti-
nation port and packets per flow. The normalized Shannon entropy normalizes all
entropy values to the interval [0, 1] so that all five time series become directly
comparable.

Every data point for the resulting five time series is computed by calculating the
entropy over a sliding window which consists of all observed flows within the last
five minutes. In addition, the sliding windows overlap by four minutes. The overlap
should lead to more fine grained results at the cost of being computationally slightly
more expensive.

Figure 3 illustrates an example. The x-axis depicts time whereas the y-axis shows
the normalized Shannon entropy ranging from 0 to 1. The spike in all time series
at May 26 at around 7am could be considered an abrupt change which should be
detected by the proposed algorithm.

03:00h
26. May. 2011

06:00h
26. May. 2011

09:00h
26. May. 2011

12:00h
26. May. 2011

15:00h
26. May. 2011

18:00h
26. May. 2011

21:00h
26. May. 2011

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

H
0
(X

)

Src. IP Dst. IP Src. Port Dst. Port Pkts. per Flow

Fig. 3. Entropy time series for five flow features.

The main idea of the proposed algorithm is to continuously conduct short-term
predictions about the progression of the respective time series. The simple expo-
nential smoothing algorithm is used for predictions. After every prediction, the dif-
ference to the measured entropy value, the so-called prediction error, is computed.

48 Martin Drašar, Jan Vykopal, Philipp Winter

The higher this difference, the more abrupt can the change in the time series be
considered.

However, the prediction errors are not equally significant since the underlying
entropy time series exhibit different statistical distributions. To make all five time
series equally significant, we multiply them with a weight factor which is calculated
based on the empirical standard deviation of the respective time series. Finally,
all five prediction errors are summed up to a single anomaly score. This makes it
possible to configure a single threshold. As soon as the anomaly score exceeds the
configured threshold, an alert can be fired.

Discussion The evaluation and real-world experiments conducted in [11] suggest
that the algorithm scales very well. In addition, the approach is easy and fast to
deploy.

3 Flow Limitations

The previous sections showed how it is possible to use network flows to discover
anomalies and intrusions. Using network flows for attack and anomaly detection
also has its downsides which are discussed below.

3.1 Information Loss

When network traffic is converted to network flows, certain information remains
(IP addresses and ports) and some information is derived (bytes per flow or packets
per flow). Other information, like the packet payload, is inevitably lost. This loss
of information implies that network flows are not suitable for the detection of all
kinds of malicious network activity. This is not an issue in case of flow-based brute-
force attack detection, but attacks which manifest solely in packet payload, such as
remote exploits, are virtually invisible in network flows.

3.2 Collection Delays

Flow-based detection does not happen in real-time because flow exports are gener-
ally driven by three timeouts. The active timeout splits long-lasting flows and the
passive timeout exports slow flows. These two timeouts influence flow aggregation
considerably and therefore the detection based on volume characteristics. The third
timeout is used for periodically sending acquired flows from the metering to the
collecting process. Traditionally, the size of this time window is 5 minutes. That
means, the acquired flows are sent at least with a 5-minute delay which could be
considered too late in case of attack which happen very fast.

Flow-based Brute-force Attack Detection 49

3.3 Packet Sampling

In [1], Brauckhoff et al. evaluated the influence of packet sampling on anomaly
detection. The authors made use of an unsampled data set containing activity of
the Blaster worm. Using a traffic baseline which lacks the activity of Blaster, the
authors simulated packet sampling at increasing rates and could thus estimate the
impact of packet sampling.

Their findings suggest that with increasing sampling rates, the number of bytes
or packets is still useful to detect Blaster activity. The number of flows is strongly
biased by sampling, though. Besides, the authors conclude that entropy-based flow
summarization is less affected by packet sampling than volume-based summarization
such as bytes or packets per flow.

4 Detection Evasion

The methods proposed in Section 2 operate with several assumptions and con-
straints that dictate what types of attack each method can detect. If these con-
straints are taken into account by an attacker, it is possible to come up with rel-
atively straightforward methods of detection evasion that can severely limit the
potential of proposed methods.

4.1 Attack Function Separation

As was described in [4], the SSH attack typically has three phases: Scanning, Brute-
force and Die-off. In our experience, this scheme is not limited to SSH attacks
and can be applied to other protocols and authentication schemes. Flow-wise, the
scanning phase is identified by large amount of small flows destined to a large
number of targets. There are usually lots of unsuccessful connections to closed or
filtered ports. In the brute-force phase, recorded flows are larger and destined to
specific targets with virtually no unsuccessful connections. The die-off phase that
is equal to a successful attack has usually few large and infrequent flows.

Both, [9] and [4] expect to some extent a specific attacking machine to go from
Scanning phase over Brute-force phase and eventually to Die-off phase. This is
a valid heuristic for attackers with limited number of machines at their disposal.
However, attackers with more resources can allocate their machines into groups
specialized on each phase, thus evading this heuristic with only a little overhead.

4.2 Hiding Under Threshold

Since the flow-based detection methods cannot inspect data in the same detail
as deep packet inspection, they are inherently dependent on using thresholds to
differentiate between normal and deviant behavior. These thresholds are usually

50 Martin Drašar, Jan Vykopal, Philipp Winter

tailored towards a given network and either determined manually or automatically.
Looking at some methods in recent papers, e.g., [7], it is apparent that the general
approach is to use conservatively high thresholds to avoid false positives. These
methods are suited for noisy attacks and can be subverted by limiting the attack
intensity. Attackers can thus stretch their attacks in both, time and volume in order
to stay under the respective thresholds and evade detection.

4.3 Temporal Distortions

Commonly available brute-forcing tools (e.g., AccessDiver, Sentry, Hydra) allow
attackers to configure the number of threads that will run in parallel. This effectively
determines the average amount of attack attempts per given time window. This
amount remains relatively constant during the course of an attack. This behavior
is exploited by methods presented in Section 2.3 to detect attacking machines.

By introducing temporal distortions (e. g., random delays) to traffic flows, the
attacker can disrupt the periodicity and the automated profile of an attack, thus
rendering the detection method ineffective. The NCrack brute-forcer is going partly
this way by adapting its brute-forcing process automatically to network conditions
(e.g., waiting with the next attack attempts after blocking of a machine or proxy),
but to the authors’ knowledge, there is no available brute-forcer to employ this
relatively cheap and easy technique.

4.4 Flow Stretching

Some detection methods that were discussed so far relied on particular flows being
relatively short and only a few packets in volume. This is reasonable, given that
attacking machines usually exchange the bare minimum of data in order to try to
authenticate. Flows of a particular attack thus look alike; the only difference is
a few bytes, usually influenced by username and password length. There is, how-
ever, danger in such an approach. Several important protocols — SSH, RDP and
HTTP(S) — by design allow the exchange of arbitrary data in the process of au-
thentication, before the final decision whether to let an attacker in or not is made.
This arbitrary data can be used to inflate both the flow size and the flow duration.
Such inflated flows no longer look alike. Instead, they can be made to look like valid
communication and avoid detection.

5 Summary

This chapter gave an overview about current research in the field of flow-based at-
tack and anomaly detection. We summarized state of the art concepts for attack
detection, especially brute-force ones, and concluded the chapter by discussing eva-
sion strategies as well as the limitations inherent to the process of detecting attacks
in network flows.

Flow-based Brute-force Attack Detection 51

References

1. D. Brauckhoff, B. Tellenbach, A. Wagner, M. May, and A. Lakhina. Impact of Packet Sampling on
Anomaly Detection Metrics. In Internet Measurement Conference, pages 159–164, Rio de Janeiro,
Brazil, 2006. ACM.

2. C. Callegari, M. Pagano, S. Giordano, and T. Pepe. Combining wavelet analysis and information
theory for network anomaly detection. In International Symposium on Applied Sciences in Biomedical
and Communication Technologies, pages 1–5, Barcelona, Spain, 2011. ACM.

3. P. Haag. NFDUMP. http://nfdump.sourceforge.net/.
4. L. Hellemons, L. Hendriks, R. Hofstede, A. Sperotto, R. Sadre, and A. Pras. SSHCure: A Flow-

Based SSH Intrusion Detection System. In International Conference on Autonomous Infrastructure,
Management, and Security, Luxembourg, Luxembourg, 2012. Springer.

5. C.-T. Huang, S. Thareja, and Y.-J. Shin. Wavelet-based Real Time Detection of Network Traffic
Anomalies. In SecureComm and Workshops, pages 1–7, 2006.

6. A. Lakhina, M. Crovella, and C. Diot. Mining Anomalies Using Traffic Feature Distributions. SIG-
COMM Comput. Commun. Rev., 35(4):217–228, 2005.

7. M. Rehak, M. Pechoucek, P. Celeda, J. Novotny, and P. Minarik. CAMNEP: agent-based network in-
trusion detection system. In International Conference on Autonomous agents and multiagent systems,
pages 133–136, Richland, SC, 2008. International Foundation for Autonomous Agents and Multiagent
Systems.

8. A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, and B. Stiller. An Overview of IP Flow-
Based Intrusion Detection. Communications Surveys Tutorials, IEEE, 12(3):343 –356, quarter 2010.

9. J. Vykopal. A Flow-Level Taxonomy and Prevalence of Brute Force Attacks. In Advances in Com-
puting and Communications, pages 666–675, Kochi, India, 2011. Springer.

10. J. Vykopal, T. Plesnik, and M. Pavel. Network-Based Dictionary Attack Detection. In International
Conference on Future Networks, pages 23–27, Bangkok, Thailand, 2009. IEEE Computer Society.

11. P. Winter, H. Lampesberger, M. Zeilinger, and E. Hermann. On Detecting Abrupt Changes in Network
Entropy Time Series. In Communications and Multimedia Security, pages 194–205, Ghent, Belgium,
2011. Springer.

Malware in Hardware Infrastructure Components

Christian Krieg and Edgar Weippl

SBA Research,
Favoritenstraße 16, 1040 Vienna, Austria
{ckrieg,eweippl}@sba-research.org

Abstract. Malicious hardware is a fairly new research topic that has attracted the interest
of the scientific community. Therefore, numerous approaches have been proposed in the last
years to counter the threat of so-called hardware Trojans. This chapter describes malicious
hardware in the context of the security of hardware infrastructure components. Network
infrastructure plays a vital role in our everyday lives, since many services depend on reliable
and secure connections. In the following, we briefly introduce the topic of hardware Trojans.
After describing their basic components, we give some insights into how hardware Trojans
can be used maliciously in infrastructure devices. Furthermore, we outline the evolution of
hardware Trojans and measures to counter them.

1 Introduction

Hardware infrastructure components are becoming increasingly vital in our everyday
lives. Sensitive data, such as credit card numbers, medical data, private communi-
cations, and banking information are transmitted over communication channels, in
most cases without the users being aware of it. It is, therefore, of utmost relevance
that communication channels are secure against adversaries who try to gain access
to sensitive data. Encryption and security protocols aim to secure communication
from a sending device to a receiving device. Cryptography is applied within these
devices, which means that data are available in plaintext. Moreover, cryptographic
keys are available in such devices, which make them a potential point of interest for
attackers who aim to compromise data confidentiality. One way to gain knowledge
of cryptographic keys would be to tamper with the device in a way that allows
the attacker to read out the keys from memory [5]. Other possibilities include fault
injection [25] combined with analysis methods such as side-channel analysis [25]. In
this contribution, we will consider a fairly new attack vector against the security
of hardware infrastructure components. We will examine how malicious hardware
inclusions – so-called hardware Trojans – affect the overall security of infrastructure
components, focusing on data confidentiality. We outline the evolution of hardware
Trojans and countermeasures in the literature.

When talking about malware in hardware infrastructure components, we focus
on functions of a system that are implemented in hardware but have not been
specified. It is the hardware itself that is malicious.

Malware can be introduced into hardware in many ways. For example, a mali-
cious designer can inject an unspecified functionality into a design by adding just

Malware in HW Infrastructure Components 53

a few lines of hardware description code [45]. Furthermore, a synthesis tool can be
modified by adversaries is that the hardware to be synthesized is altered in an un-
specified manner [41]. And even if it is expensive and resource-intensive, a malicious
chip producer can reverse-engineer a design to include circuitry at the physical level
[2].

Hardware Trojans will be the topic of this chapter. Section 2 will briefly classify
hardware Trojans. Section 3 presents some ideas on how malicious hardware can
subvert an infrastructure and how sensitive data can be leaked by hardware Trojans.
In Section 4, we outline the historical development of hardware Trojans, always
being aware of defense methods to counter Trojans.

2 Components of Hardware Trojans

As hardware Trojans have to pass functional tests without being detected, they
have two basic mechanisms: a trigger and a payload mechanism [50].

A trigger should activate the payload upon a certain condition, such as the
occurrence of a rare event (e.g., a bit pattern 0x3745 on a data line), the lapse
of a certain time interval (e.g., 10,000 seconds), or a condition that is met by the
environment (e.g., temperature is 65◦C). The most essential requirement of a trigger
condition is that it is not met during functional tests, which are integral parts of
the hardware production process. Otherwise, it could activate the Trojan during
the test, which would make it more detectable.

The payload mechanism implements the effective function of a Trojan. For in-
stance, this could be a kill switch (i.e., the permanent deactivation of a hardware
system), the interception of sensitive data such as a cryptographic key, or the remote
control of a hardware system (which corresponds to opening a hardware backdoor).

3 Hardware Trojans in Infrastructure Components

Section 4 provides a comprehensive overview of the approaches to Trojan detection.
It shows that the problem is manifold and illustrates the wide range of attack
vectors.

Although there have been no reports of an actual attack so far, recent research
has addressed many threats to infrastructure components. For example, Jin et al.
show that it is possible to leak the cryptographic key of a wireless device over the
wireless channel [23]. Depending on each bit of the key, the wireless signal is altered
within the permitted tolerances. That way, an attacker only has to reside within the
range of the wireless device, record the signal, and perform a statistical analysis to
obtain the key. Subsequently, the attacker can use the key for authentication and use
the device as legitimate user, which enables her to subvert the entire infrastructure
of which the device is a part.

54 Christian Krieg, Edgar Weippl

Similarly, Lin et al. show how data can be leaked over a secret channel [32].
By modulating the power supply signal of a device, sensitive data can be leaked
stealthily. It is hard to detect the covert transmission of data, since the signal
is modulated in the code division multiplex, i.e., spread spectrum technology is
used. Therefore, without knowledge of the correct code, the covert signal cannot be
detected, as it is indistinguishable from noise. To obtain sensitive data (such as a
cryptographic key), an attacker has to probe the power supply signal of the device
under attack and demodulate it by correlating it with the proper code.

Likewise, King et al. designed a malicious processor, which has hidden hardware
implemented that allows an attacker to perform extensive attacks on the software
layer [27]. The Illinois Malicious Processor provides mechanisms to illegitimately
login to an overlying operating system as administrative user without providing a
password. This way, an attacker can get broad access over an infrastructure compo-
nent. If such a processor is deployed, e.g., in a router, the infrastructure itself could
be modified, therefore serving as a base for further attacks on the network layer.

4 Evolution of Hardware Trojans and Their
Countermeasures

Hardware Trojans have become a serious problem for the security of IT systems. In
the following, we outline the historical evolution of Trojans, which is accompanied
by the evolution of countermeasures to fight Trojans. We describe the development
from 2005, when the US Department of Defense published a report on the supply
of semiconductors [19], to the present. To maintain logical association, we have
grouped the approaches into subsections.

4.1 Raising Political Awareness

In 2005, the US Department of Defense released a report about the security of supply
of high-performance integrated circuits [19]. In this report, they investigated the
concept of a vertical business model for compliance with the demand for secure and
authentic hardware. The report stated that the manufacturing of microchips had
been relocated to low-wage countries for financial reasons. Therefore, the risk that
chip manufacturers could add additional functions during the production process
appeared possible. The report described trustworthiness as follows:

“Trustworthiness includes confidence that classified or mission critical in-
formation contained in chip designs is not compromised, reliability is not
degraded or unintended design elements inserted in chips as a result of de-
sign or fabrication in conditions open to adversary agents. Trust cannot be
added to integrated circuits after fabrication; electrical testing and reverse

Malware in HW Infrastructure Components 55

engineering cannot be relied upon to detect undesired alterations in military
integrated circuits.” 1

As the production consistently had been transferred to potential enemies, the US
Department of Defense did not believe that the supply of necessary semiconductors
could be ensured in the event of war.

For this reason, the research project TRUST in Integrated Circuits (TIC) was
started in 2007 by the Defense Advanced Research Projects Agency (DARPA) [17].
TIC is intended to develop technologies that can provide trust for circuits in the ab-
sence of a trusted foundry. It only considers technical efforts that address the fabri-
cation of Application-Specific Integrated Circuits (ASICs) by non-trusted foundries
and software implementation of configurable hardware, such as Field-Programmable
Gate Arrays (FPGAs).

[1] triggered a veritable flood of publications with his article on the threat of
hardware Trojans.

2008 can be clearly identified as the year in which this topic gained academic
interest. The Australian Department of Defence picked up the topic and published
a report about the battle against hardware Trojans, evaluating its effectiveness [4].

4.2 Introducing Side-Channel Analysis

In the same year, [2] published their work on a method to detect secretly added
functionality through side-channel analysis. A device under test is monitored with
regard to physical side channels, such as supply voltage or timing. This work can
definitely be seen as the starting point for numerous publications on this topic.

The focus at the time was clearly on side-channel analysis [7,10,11,24,31,38,47],
but other methods in the area of logic tests [15] were proposed as well. To aug-
ment the detection rate, some approaches for increasing the activation of hardware
Trojans were proposed [40,22].

4.3 Malicious Computer Systems

[27] were the first to publish a comprehensive combined hardware/software attack.
In this attack, a hardware Trojan serves as the basis of an extensive attack by
allowing an attacker to sign on to the operating system with root privileges with
the help of a hardware backdoor.

The University of New York held a competition where the goal was to implement
hardware Trojans. The criteria for the competition were to insert malicious circuits
into the original layout as unnoticeably as possible; the extraction of information
without being noticed was also part of the position in the final ranking. Work
submitted to the competition can be found in [16,12].

1 [19], p. 3

56 Christian Krieg, Edgar Weippl

4.4 Increasing Trojan Activation

Many approaches have been presented for increasing the chance for Trojan activa-
tion, which should help improve the detection rate during functional tests. Toggle
minimization is used to reduce the overall activity of a circuit to be able to measure
the (partial) activity of a Trojan, if one is present [9].

Inverting the supply voltage of the logic gates in a circuit causes the logic states of
the gates to be inverted as well. This measure causes an inversion of the detectability
– a Trojan that was previously hard to spot can now be easy to detect [8].

Generating optimal testing patterns should increase the detection rate for logic
tests. [14] present an approach for initiating rare logic states multiple times in order
to help trigger a potential trigger condition. Rare states are identified by a statistical
method.

[42] increase the chance of state changes (“toggles”) by inserting dummy flip-
flops into the original design. Dummy flip-flops are realized as scan flip-flops to
preserve the original functionality.

[6] present an approach that first determines signals that are easy to activate
during a functional test. These signals are then ignored when testing for the pres-
ence of Trojans that are hard to identify. Using the remaining signals, a formal
verification is carried out. Any detected Trojans are subsequently isolated.

4.5 Applying Gate-Level Characterization to Trojan Detection

Generally, side-channel analysis should detect deviations from expected behavior
caused by hardware Trojans. Because Trojans strive to be hard to detect during
a functional test, the impact of a Trojan is assumed to be as small as possible
compared to overall circuit activity.

This is a problem for their detection, because the effect of process variations will
be of almost the same order of magnitude as Trojan impact.

The approach of GLC (Gate-Level Characterisation) tries to characterize each
gate of an IC. Here, the values performance, switching power and leakage current
are used for characterization. Scaling factors are calculated to account for process
variations that cannot be avoided in the manufacturing process. During a functional
test, scaling factors are measured with the help of side-channel analysis. If the testing
results of an IC differ too much from the calculated characteristics, a Trojan may
have been implemented [36,37].

4.6 Proposing Trojan-Resistant Bus Architectures

Trojans that have been inserted into complex hardware can also be detected with
the help of the operating system. [13] propose an approach where a simple hard-
ware guard monitors accesses from the CPU to the memory data bus and performs

Malware in HW Infrastructure Components 57

liveness checks. A watchdog timer is started each time the monitor observes a cer-
tain pseudorandom memory access procedure, which is initiated by the operating
system. If the watchdog times out, a Denial-of-Service (DoS)-attack is detected.
The operating system also periodically checks if memory protection is activated to
prevent privilege escalation attacks.

[26] propose a Trojan-resistant bus architecture for Systems-on-Chip (SoCs).
The architecture is able to detect unauthorized bus accesses. To prevent DoS at-
tacks, permanent bus allocation to one bus node is blocked by limiting maximum
bus allocation time.

4.7 Stealthy Trojan Communication

A very interesting new class of Trojans is introduced in [32], where they present
a new technology called Malicious Off-Chip Leakage Enabled by Side-Channels
(MOLES), which allows the extraction of sensitive data with the help of spread-
spectrum technology. Because the signal of the extracted information completely
disappears in noise, a detection of the hidden data transfer is hardly ever possible.
[33] describe how data can be transmitted by modulating the power supply signal
using spread-spectrum techniques. The implementation makes use of high capaci-
tances that draw current while charging. Depending on whether a zero or one is to
be transmitted, a capacitor is charged or not. The charging current – encoded via
spread-spectrum technique – can be analyzed by performing a side-channel analysis
on the power supply.

4.8 Securing Multi-Core Architectures

Another approach to detect Trojans in multi-core systems is proposed by [34]. In
this approach, software to be executed is varied while keeping functional equivalence.
This can be accomplished by using different compilations or alternative algorithms.
The variants of the software are executed on multiple cores. If one variant of the
software matches the trigger condition of an injected Trojan – thus activating it –
the results of two calculations will differ. This way, a Trojan can be detected and
isolated at runtime.

4.9 Introducing Run-Time Detection

The BlueChip approach introduced by [21] relies on additional hardware modules. It
is designed to render hardware Trojans injected at design time harmless at runtime.

Trojans are isolated by replacing suspicious circuits by software emulation. Sus-
picious circuits are identified with Unused Circuit Identification (UCI), which is a
method that monitors the activity of a circuit during the functional test. If a part
of a circuit remains unused during the entire testing period, it is considered to be

58 Christian Krieg, Edgar Weippl

assigned to a Trojan circuit (which should not be detected during functional tests
and would, therefore, remain silent).

[45] present an approach to combat Trojans especially in microprocessors at
runtime. The assumption is that malicious functionality is injected during the design
phase by malicious designers. The following constraints are defined:

1. The number of malicious designers is low,
2. the activity of malicious designers remains unnoticed,
3. the attackers need few resources to inject a backdoor,
4. the backdoor is activated by a trigger,
5. the Read-Only Memories (ROMs) written during the design phase contain cor-

rect data (microcode).

Two types of backdoors serve as a Trojan model: emitter (send data) and cor-
ruptor backdoors (modify data). The latter are very difficult to detect, since their
operations can be hard to distinguish from normal, legitimate operations. The pro-
posed measure to prevent the hardware backdoors is an on-chip monitoring system
that consists of four parts: predictor, reactor, target and monitor.

A Trojan is discovered if the result of the monitored unit does not match the
predicted outcome of the predictor. The detection principle is based on the assump-
tion that the monitored unit never communicates with the monitoring instance –
therefore, the designer of a malicious unit X cannot corrupt the monitor of X.

4.10 Improving Side-Channel Analysis

[20] propose another approach based on side-channel analysis to detect hardware
Trojans. The power consumption of a particular region of an IC is compared to the
power consumption of the same region of another IC. If the power consumptions
differ greatly, the reason could be a Trojan. This technique is called self referencing.

[35] partition a layout where the different partitions are stimulated through ap-
propriate test patterns. Transient current (IDDT) und maximum frequency (fmax)
are determined via side-channel analysis. Because IDDT and fmax are linearly de-
pendent and fmax is unalterable, a Trojan can be detected by observing an increase
of IDDT .

To determine the smallest detectable Trojan, [39] examine the sensitivity of a
transient analysis of power supply signals. The smallest detectable Trojan consists
of a single logic gate under laboratory conditions if the Trojan responds to a test
pattern. If the measurement is characterized by a Signal-to-Noise-Ratio (SNR) of
10 dB, the size of the smallest recognizable Trojan increases to seven gates.

4.11 Trojan Localization

[43] rearrange scan chains to increase the detection of hardware Trojans. The ap-
pliance used to test integrated circuits is usually not bound to a specific layout on

Malware in HW Infrastructure Components 59

the chip. The approach suggests a layout that rearranges scan chains over the entire
chip area, so that certain areas can be specifically activated or deactivated during
the functional test.

This should make the activity of a Trojan visible. Experimental tests show a
partial amplification of Trojan activity by a factor of 30.

4.12 Enhanced Gate-Level Characterization

[49] introduce a way of detecting Trojans using the method of GLC with thermal
conditioning. Thermal conditioning means that an IC is intentionally heated un-
evenly. This method exploits the fact that the leakage power increases exponentially
with temperature.

The aim is to eliminate correlations when measuring leakage power that are
caused by dependencies of gates with other gates. By heating correlated gates differ-
ently, more variability is introduced into the calculation results. The entire process
is calculated using a simulation model. Simulation results can be used to obtain
scaling factors in order to calibrate the measurement procedure to minimize mea-
surement variations caused by process variations. The advantage of applying this
method is the full characterization of all gates of an IC.

The detection of Trojans by GLC with thermal conditioning is not suitable for
large circuits, because properties are determined for the entire circuit. Attackers
can exploit this fact and inject ultra-small Trojans, whose impact will disappear in
measurement noise [48]. To make the process scalable and thus useful for the analysis
of large ICs, [48] extend the process by adding a preceding step of segmentation,
which decomposes a large circuit into many small sub-circuits.

The segmentation criteria are chosen in a way that ensures that the results of
the following GLC are as accurate as possible. The segmentation process itself is
accomplished by varying an amount of primary input vectors and, at the same
time, ‘freezing’ the other input vectors. The circuit part obtained by segmentation
is now seen as an independent part of the circuit (i.e., a segment). A GLC with
thermal conditioning, which is applied to this segment, provides information about
the presence of Trojan. A subsequent identification mechanism based on the prin-
ciple of ‘guess and verify’ should provide information about the type and the input
pins of any existing Trojan.

4.13 Data Leakage by Trojans

[23] present an attack that aims to leak an Advanced Encryption Standard (AES)
key. This is achieved by manipulating the transmission signal of a wireless link
within its tolerances. This work is the first presented attack in the analog domain.

Using an external guardian core, [18] propose an approach to prevent data leaks
via the data bus caused by hardware Trojans. The watchdog monitors the access

60 Christian Krieg, Edgar Weippl

behavior to the main memory by comparing each memory access with an emulated
version of it. If the memory accesses match, it is approved by the guard, other-
wise it is discarded. The emulation of the memory accesses is done in the software
applications that are executed on the system.

4.14 Defining Threat Models

A new class of attacks against cryptographic algorithms is presented by [3]. These
so-called multi-level attacks are based on the interaction of multiple people involved
in the hardware design and production process.

The authors present an example of such an attack, where the secret key of a
hardware implementation of the AES algorithm is leaked through a hidden channel
of the power supply.

The authors assume a link between the developer and the operator of cryp-
tographic hardware. The developer inserts the malicious circuit into the original
circuit. After manufacturing, the secret key can be read by the operator. Collabo-
ration between the two parties is necessary because otherwise, without knowledge
of the technology used, the operator would not be able to read the key.

4.15 Combining Different Approaches to Side-Channel Analysis

A first approach for combining the possibilities of different methods of side-channel
analysis is presented by [28], which is an advancement of [29].

The framework allows analysis by different side channels and the use of different
evaluation methods, such as quiescent current, leakage current, and delay.

The mathematical analysis of the measurement results is based on GLC and
a subsequent statistical analysis. Here, a new objective function is defined for the
linear program that takes into account the submodularity of the problem: The impact
of a Trojan on a side channel is greater the smaller the analyzed circuit is.

After GLC, the deviation of the measurement results (obtained by the various
side-channel analyses) from the expected values is calculated for each gate. A sensi-
tivity analysis is performed so that possible malicious circuits can be detected. The
design of the Trojan determines the effect on the side channels. Some Trojans are
more likely to have an impact on power consumption, while others will affect the
performance. The measurement results of the different analyses (multimodal) are
combined to achieve a higher detection rate. Experiments show that if the Trojans
are inserted into areas with adequate sensitivity, the detection rate is 100%. The
reverse is true as well: This method can also be used to find areas in which Trojans
are most difficult to detect.

[30] also evaluate the effectiveness of the combined results from the analyses of
various side channels. In contrast to [28], however, they present no general model in
which the results of different side-channel analyses could be combined. They show

Malware in HW Infrastructure Components 61

that by combining transient power and performance, followed by regression analysis,
higher detection rates can be achieved in contrast to using each side channel on its
own. Experiments show detection rates of up to 80% when they are not calibrated.
After calibration, a detection rate of 100% can be achieved.

4.16 Increase Trojan Activation by Additional Flip-Flops

To increase the probabilities of state transitions in circuits during functional tests,
[44,42] present an approach to insert dummy scan flip-flops into the original circuit
layout. The consideration is that Trojans will be activated completely or in part
and, thereby, have an impact on side channels. For example, the gates of a Trojan
could switch – the additional energy consumption could be visible in the course
of a side-channel analysis. The biggest motivation is to shorten the authentication
process of an IC.

The method is carried out as follows: first, a threshold for the switching proba-
bility is determined that takes into account technical and economic considerations.
Then, the switching probabilities of each sub-net are determined and the nets are
divided into two groups, one with high and one with low switching probabilities. A
dummy scan flip-flop is connected to nets with low switching probability to increase
the probability of a transition. A net that tends to logic 0 is succeeded by a scan
flip-flop that draws the output of the net (in a testing setup) to logic 1 if needed.
The opposite is true for nets that tend to logic 1.

4.17 Avoiding Trojans

[46] present an approach to avoid Trojans which is intended to prevent the occur-
rence of the trigger condition of digital, deterministic triggers.

Untrusted data is not monitored and manipulated within functional groups, but
rather on their inputs and outputs. The idea is that data is scrambled and obscured
in a controlled manner, so that a trigger cannot find a valid trigger condition and,
therefore, a Trojan will never become active. The following types of triggers are
considered:

1. ticking timebomb,
2. single-shot cheat code and
3. sequence cheat code.

A ticking timebomb is a time-controlled trigger that is activated when a prede-
termined number of clock cycles N has elapsed. The clock cycles that have already
passed are usually determined using a counter. If this counter is always reset before
reaching state N , a Trojan will never become active. This can be achieved by pe-
riodically resetting the entire digital system (power reset). The reset interval must

62 Christian Krieg, Edgar Weippl

be smaller than the testing period T that the obligatory functional test requires. If
an attacker wants to achieve that a ticking timebomb will be activated, this must
occur within N clock cycles. However, if N < T , the Trojan will be activated and
detected during the functional tests.

Data-based triggers can be separated into single-shot cheat code and sequence
cheat code triggers. Single-shot cheat code triggers are activated when a certain
rare value is applied to the monitored interface. To prevent a rare value from being
knowingly applied to an input of a compromised functional unit by an attacker,
it is obfuscated by encryption in such a way that it no longer meets the trigger
condition. Simple encryption methods are, for example, XOR, PUF, or random
values. This approach is valid for non-computational units such as memory, etc.
In order to protect computational units (e.g., ALU), homomorphic functions are
used. Homomorphic functions obey the following rule: f(g(x), g(y)) = g(f(x, y)).
An example of a homomorphic function is: x2y2 = (xy)2. If we assume that the
computational function is the squaring, a non-trustworthy value x that is to be
processed is multiplied by a random value y before it is squared. To obtain a valid
result, the result on the output of the functional unit must be divided by y2.

The last class of triggers, sequence cheat codes, is countered by scrambling and
inserting dummy loads. The scrambling is achieved by simple reordering. If this
is not possible, dummy loads can be inserted into the data stream. A maximum
number n of bits must be defined which is then allowed as a valid sequence. After
n processed bits, a dummy load is inserted to avoid execution.

4.18 Using Ring Oscillators for Trojan Detection

[51] use a network of ring oscillators to detect injected Trojans. A ring oscillator is
a simple circuit for generating oscillations, consisting of an odd number of similar
gates.

The principle of detection is based on the fact that the frequency of a ring oscilla-
tor is influenced by physical parameters. Accordingly, the frequency also depends on
the supply voltage VDD. If VDD drops, the propagation delay of the gates increases.
This in turn means that the delay of the entire ring oscillator and, therefore, its
cycle duration increases, which is equivalent to a drop in frequency.

A drop in VDD occurs when a gate draws current. If the use of CMOS is assumed,
this is the case with each switch of a transistor of a gate, hence, with every state
change. If a Trojan is implemented in an IC, adjacent ring oscillators will see a
stronger decrease in VDD and, consequently, a frequency drop compared to ICs
without a Trojan.

To achieve the best possible coverage, ring oscillators are distributed over the
entire chip area. Using statistical methods, in which the frequencies of the built-in
ring oscillators are evaluated (simple outlier analysis, principal component analysis
and advanced outlier analysis), a detection rate of 100% is achieved. The validation

Malware in HW Infrastructure Components 63

using an FPGA provides detection rates between 80% and 100%. The robustness
of the approach against direct attacks is considered very high, because the manip-
ulations have direct impact on the frequency of the ring oscillators and, therefore,
become visible immediately in functional tests.

5 Conclusion

Malicious hardware presents a serious threat to infrastructure components. Taking
into account that powerful embedded systems, such as smartphones, are widely
used today, a gloomy picture can be painted for the future. As they are extensively
connected to the internet, a broad class of targets is available.

In this chapter, we showed how malicious circuits could be used to subvert
an infrastructure by taking over its components. Further, we presented the basic
components of hardware Trojans, i.e., trigger and payload mechanisms. We also
outlined how hardware Trojans have evolved over time, as well as the methods to
counter them.

References

1. S. Adee. The Hunt For The Kill Switch. Spectrum, IEEE, 45(5):34 –39, may. 2008. ISSN 0018-9235.
doi: 10.1109/MSPEC.2008.4505310.

2. D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar. Trojan Detection using IC Fin-
gerprinting. In Security and Privacy, 2007. SP ’07. IEEE Symposium on, pages 296 –310, may. 2007.
doi: 10.1109/SP.2007.36.

3. Sk. Subidh Ali, Rajat Subhra Chakraborty, Debdeep Mukhopadhyay, and Swarup Bhunia. Multi-level
attacks: An emerging security concern for cryptographic hardware. In Proc. Design, Automation &
Test in Europe Conf. & Exhibition (DATE), pages 1–4, 2011. URL http://ieeexplore.ieee.org/

stamp/stamp.jsp?tp=&arnumber=5763307.

4. M. S. Anderson, C. J. G. North, and K. K. Yiu. Towards Countering the Rise of the Silicon Trojan.
Technical report, 12 2008. URL http://dspace.dsto.defence.gov.au/dspace/bitstream/1947/

9736/1/DSTO-TR-2220%20PR.pdf.

5. Ross J. Anderson. Security Engineering: A Guide to Building Dependable Distributed Systems. John
Wiley & Sons, Inc., New York, NY, USA, 1st edition, 2001. ISBN 0471389226. URL http://www.

cl.cam.ac.uk/~rja14/Papers/SE-14.pdf.

6. M. Banga and M. S. Hsiao. Trusted RTL: Trojan detection methodology in pre-silicon designs.
In Proc. IEEE Int Hardware-Oriented Security and Trust (HOST) Symp, pages 56–59, 2010. doi:
10.1109/HST.2010.5513114.

7. M. Banga and M.S. Hsiao. A region based approach for the identification of hardware Trojans. In
Hardware-Oriented Security and Trust, 2008. HOST 2008. IEEE International Workshop on, pages
40 –47, jun. 2008. doi: 10.1109/HST.2008.4559047.

8. M. Banga and M.S. Hsiao. VITAMIN: Voltage inversion technique to ascertain malicious insertions
in ICs. In Hardware-Oriented Security and Trust, 2009. HOST ’09. IEEE International Workshop
on, pages 104 –107, 2009a. doi: 10.1109/HST.2009.5224960.

9. M. Banga and M.S. Hsiao. A Novel Sustained Vector Technique for the Detection of Hardware
Trojans. In VLSI Design, 2009 22nd International Conference on, pages 327 –332, 2009b. doi:
10.1109/VLSI.Design.2009.22.

64 Christian Krieg, Edgar Weippl

10. Mainak Banga. Partition based Approaches for the Isolation and Detection of Embedded Tro-
jans in ICs. Master’s thesis, Faculty of Virginia Polytechnic Institute and State University, 09
2008. URL http://scholar.lib.vt.edu/theses/available/etd-09042008-155719/unrestricted/

MS_Thesis_Mainak.pdf.

11. Mainak Banga, Maheshwar Chandrasekar, Lei Fang, and Michael S. Hsiao. Guided Test Generation
for Isolation and Detection of Embedded Trojans in ICs. In GLSVLSI ’08: Proceedings of the 18th
ACM Great Lakes symposium on VLSI, pages 363–366, New York, NY, USA, 2008. ACM. ISBN
978-1-59593-999-9. doi: http://doi.acm.org/10.1145/1366110.1366196.

12. Alex Baumgarten, Michael Steffen, Matthew Clausman, and Joseph Zambreno. A case study in
hardware Trojan design and implementation. International Journal of Information Security, 10:1–14,
2010. ISSN 1615-5262. URL http://dx.doi.org/10.1007/s10207-010-0115-0.

13. G. Bloom, R. Simha, and B. Narahari. OS support for detecting Trojan circuit attacks. In Hardware-
Oriented Security and Trust, 2009. HOST ’09. IEEE International Workshop on, pages 100 –103,
2009. doi: 10.1109/HST.2009.5224959.

14. Rajat Chakraborty, Francis Wolff, Somnath Paul, Christos Papachristou, and Swarup Bhunia.
MERO: A Statistical Approach for Hardware Trojan Detection. In Christophe Clavier and Kris
Gaj, editors, Cryptographic Hardware and Embedded Systems - CHES 2009, volume 5747 of Lec-
ture Notes in Computer Science, pages 396–410. Springer Berlin / Heidelberg, 2009. URL http:

//dx.doi.org/10.1007/978-3-642-04138-9_28.

15. R.S. Chakraborty, S. Paul, and S. Bhunia. On-demand transparency for improving hardware Tro-
jan detectability. In Hardware-Oriented Security and Trust, 2008. HOST 2008. IEEE International
Workshop on, pages 48 –50, jun. 2008. doi: 10.1109/HST.2008.4559048.

16. Z. Chen, X. Guo, A. Nagesh, M. Reddy, and A. Maiti. Hardware Trojan Designs on BASYS
FPGA Board. http://filebox.vt.edu/users/xuguo/homepage/publications/csaw08.pdf, 2008.
URL http://filebox.vt.edu/users/xuguo/homepage/publications/csaw08.pdf.

17. DARPA. Trust in Integrated circuits (TIC). http://www.darpa.mil/MTO/solicitations/baa07-24/
index.html, Mar 2007. URL http://www.darpa.mil/MTO/solicitations/baa07-24/index.html.

18. A. Das, G. Memik, J. Zambreno, and A. Choudhary. Detecting/preventing information leakage on
the memory bus due to malicious hardware. In Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2010, pages 861 –866, mar. 2010. URL http://portal.acm.org/citation.cfm?

id=1871135.

19. Defense Science Board, Department of Defense, U.S.A. High Performance Microchip supply. http:

//www.cra.org/govaffairs/images/2005-02-HPMS_Report_Final.pdf, 02 2005. URL http://www.

cra.org/govaffairs/images/2005-02-HPMS_Report_Final.pdf.

20. Dongdong Du, Seetharam Narasimhan, Rajat Chakraborty, and Swarup Bhunia. Self-referencing: A
Scalable Side-Channel Approach for Hardware Trojan Detection. In Stefan Mangard and François-
Xavier Standaert, editors, Cryptographic Hardware and Embedded Systems, CHES 2010, volume 6225
of Lecture Notes in Computer Science, pages 173–187. Springer Berlin / Heidelberg, 2010. URL
http://dx.doi.org/10.1007/978-3-642-15031-9_12.

21. Matthew Hicks, Murph Finnicum, Samuel T. King, Milo M. K. Martin, and Jonathan M. Smith.
Overcoming an Untrusted Computing Base: Detecting and Removing Malicious Hardware Automat-
ically. In Security and Privacy (SP), 2010 IEEE Symposium on, pages 159 –172, May 2010. doi:
10.1109/SP.2010.18.

22. S. Jha and S.K. Jha. Randomization Based Probabilistic Approach to Detect Trojan Circuits. In
High Assurance Systems Engineering Symposium, 2008. HASE 2008. 11th IEEE, pages 117 –124,
2008. doi: 10.1109/HASE.2008.37.

23. Y. Jin and Y. Makris. Hardware Trojans in Wireless Cryptographic ICs. Design Test of Computers,
IEEE, 27(1):26 –35, jan. 2010. ISSN 0740-7475. doi: 10.1109/MDT.2010.21.

24. Yier Jin and Y. Makris. Hardware Trojan detection using path delay fingerprint. In Hardware-
Oriented Security and Trust, 2008. HOST 2008. IEEE International Workshop on, pages 51 –57,
2008. doi: 10.1109/HST.2008.4559049.

25. Chong Hee Kim and J.-J. Quisquater. Faults, injection methods, and fault attacks. IEEE Design &
Test of Computers, 24(6):544–545, 2007. doi: 10.1109/MDT.2007.186.

Malware in HW Infrastructure Components 65

26. Lok-Won Kim, J.D. Villasenor, and C.K. Koc. A Trojan-resistant system-on-chip bus architecture. In
Military Communications Conference, 2009. MILCOM 2009. IEEE, pages 1 –6, 2009. doi: 10.1109/
MILCOM.2009.5379966.

27. Samuel T. King, Joseph Tucek, Anthony Cozzie, Chris Grier, Weihang Jiang, and Yuanyuan Zhou.
Designing and implementing malicious hardware. In LEET’08: Proceedings of the 1st Usenix Work-
shop on Large-Scale Exploits and Emergent Threats, pages 1–8, Berkeley, CA, USA, 2008. USENIX
Association. URL http://portal.acm.org/citation.cfm?id=1387709.1387714.

28. F. Koushanfar and A. Mirhoseini. A Unified Framework for Multimodal Submodular Integrated
Circuits Trojan Detection. 6(1):162–174, 2011. doi: 10.1109/TIFS.2010.2096811.

29. Farinaz Koushanfar, Azalia Mirhoseini, and Yousra Alkabani. A Unified Submodular Framework for
Multimodal IC Trojan Detection. In Rainer Böhme, Philip Fong, and Reihaneh Safavi-Naini, editors,
Information Hiding, volume 6387 of Lecture Notes in Computer Science, pages 17–32. Springer Berlin
/ Heidelberg, 2010. URL http://dx.doi.org/10.1007/978-3-642-16435-4_2.

30. C. Lamech, R. Rad, M. Tehrani, and J. Plusquellic. An Experimental Analysis of Power and De-
lay Signal-to-Noise Requirements for Detecting Trojans and Methods for Achieving the Required
Detection Sensitivities. (99), 2011. doi: 10.1109/TIFS.2011.2136339. Early Access.

31. Jie Li and J. Lach. At-speed delay characterization for IC authentication and Trojan Horse detection.
In Hardware-Oriented Security and Trust, 2008. HOST 2008. IEEE International Workshop on, pages
8 –14, 2008. doi: 10.1109/HST.2008.4559038.

32. Lang Lin, W. Burleson, and C. Paar. MOLES: Malicious off-chip leakage enabled by side-channels.
In Computer-Aided Design - Digest of Technical Papers, 2009. ICCAD 2009. IEEE/ACM Interna-
tional Conference on, pages 117 –122, 2009a. URL http://ieeexplore.ieee.org/xpls/abs_all.

jsp?arnumber=5361303.

33. Lang Lin, Markus Kasper, Tim Güneysu, Christof Paar, and Wayne Burleson. Trojan Side-Channels:
Lightweight Hardware Trojans through Side-Channel Engineering. In Christophe Clavier and Kris
Gaj, editors, Cryptographic Hardware and Embedded Systems - CHES 2009, volume 5747 of Lecture
Notes in Computer Science, pages 382–395. Springer Berlin / Heidelberg, 2009b. URL http://dx.

doi.org/10.1007/978-3-642-04138-9_27.

34. D. Mclntyre, F. Wolff, C. Papachristou, S. Bhunia, and D. Weyer. Dynamic evaluation of hardware
trust. In Hardware-Oriented Security and Trust, 2009. HOST ’09. IEEE International Workshop on,
pages 108 –111, 2009. doi: 10.1109/HST.2009.5224990.

35. S. Narasimhan, Dongdong Du, R.S. Chakraborty, S. Paul, F. Wolff, C. Papachristou, K. Roy, and
S. Bhunia. Multiple-parameter side-channel analysis: A non-invasive hardware Trojan detection ap-
proach. In Hardware-Oriented Security and Trust (HOST), 2010 IEEE International Symposium on,
pages 13 –18, 2010. doi: 10.1109/HST.2010.5513122.

36. Michael Nelson, Ani Nahapetian, Farinaz Koushanfar, and Miodrag Potkonjak. SVD-Based Ghost
Circuitry Detection. In Stefan Katzenbeisser and Ahmad-Reza Sadeghi, editors, Information Hiding,
volume 5806 of Lecture Notes in Computer Science, pages 221–234. Springer Berlin / Heidelberg,
2009. URL http://dx.doi.org/10.1007/978-3-642-04431-1_16. 10.1007/978-3-642-04431-1 16.

37. Miodrag Potkonjak, Ani Nahapetian, Michael Nelson, and Tammara Massey. Hardware Trojan horse
detection using gate-level characterization. In DAC ’09: Proceedings of the 46th Annual Design Au-
tomation Conference, pages 688–693, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-497-3. doi:
http://doi.acm.org/10.1145/1629911.1630091.

38. R. Rad, J. Plusquellic, and M. Tehranipoor. Sensitivity analysis to hardware Trojans using power
supply transient signals. In Hardware-Oriented Security and Trust, 2008. HOST 2008. IEEE Inter-
national Workshop on, pages 3 –7, jun. 2008a. doi: 10.1109/HST.2008.4559037.

39. R. Rad, J. Plusquellic, and M. Tehranipoor. A Sensitivity Analysis of Power Signal Methods for
Detecting Hardware Trojans Under Real Process and Environmental Conditions. Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, 18(12):1735 –1744, 2010. ISSN 1063-8210. doi:
10.1109/TVLSI.2009.2029117.

40. R.M. Rad, Xiaoxiao Wang, M. Tehranipoor, and J. Plusquellic. Power supply signal calibration
techniques for improving detection resolution to hardware Trojans. In Computer-Aided Design, 2008.
ICCAD 2008. IEEE/ACM International Conference on, pages 632 –639, 11 2008b. doi: 10.1109/
ICCAD.2008.4681643.

66 Christian Krieg, Edgar Weippl

41. J. A. Roy, F. Koushanfar, and I. L. Markov. Extended abstract: Circuit CAD tools as a security threat.
In Proc. IEEE Int. Workshop Hardware-Oriented Security and Trust HOST 2008, pages 65–66, 2008.
doi: 10.1109/HST.2008.4559052.

42. H. Salmani, M. Tehranipoor, and J. Plusquellic. New design strategy for improving hardware Trojan
detection and reducing Trojan activation time. In Hardware-Oriented Security and Trust, 2009. HOST
’09. IEEE International Workshop on, pages 66 –73, 2009. doi: 10.1109/HST.2009.5224968.

43. H. Salmani, M. Tehranipoor, and J. Plusquellic. A layout-aware approach for improving localized
switching to detect hardware Trojans in integrated circuits. In Proc. IEEE Int Information Forensics
and Security (WIFS) Workshop, pages 1–6, 2010. doi: 10.1109/WIFS.2010.5711438.

44. H. Salmani, M. Tehranipoor, and J. Plusquellic. A Novel Technique for Improving Hardware Trojan
Detection and Reducing Trojan Activation Time. (99), 2011. doi: 10.1109/TVLSI.2010.2093547.
Early Access.

45. Adam Waksman and Simha Sethumadhavan. Tamper Evident Microprocessors. In SP ’10 Proceedings
of the 2010 IEEE Symposium on Security and Privacy, pages 173 –188, may. 2010. doi: 10.1109/SP.
2010.19.

46. AdamWaksman and Simha Sethumadhavan. Silencing Hardware Backdoors. In Proc. IEEE Symp. Se-
curity and Privacy (SP), pages 49–63, 2011. doi: 10.1109/SP.2011.27. URL http://www.cs.columbia.

edu/~simha/preprint_oakland11.pdf.
47. Xiaoxiao Wang, H. Salmani, M. Tehranipoor, and J. Plusquellic. Hardware Trojan Detection and

Isolation Using Current Integration and Localized Current Analysis. In Defect and Fault Tolerance
of VLSI Systems, 2008. DFTVS ’08. IEEE International Symposium on, pages 87 –95, 2008. doi:
10.1109/DFT.2008.61.

48. Sheng Wei and M. Potkonjak. Scalable segmentation-based malicious circuitry detection and diagno-
sis. In Proc. MayAugust, pages 483–486, 2010. doi: 10.1109/ICCAD.2010.5653770.

49. Sheng Wei, Saro Meguerdichian, and Miodrag Potkonjak. Gate-level characterization: Foundations
and hardware security applications. In Proc. 47th ACM/IEEE Design Automation Conf. (DAC),
pages 222–227, 2010. URL http://ieeexplore.ieee.org/ielx5/5510861/5522347/05522644.pdf?

tp=&arnumber=5522644&isnumber=5522347.
50. F. Wolff, C. Papachristou, S. Bhunia, and R.S. Chakraborty. Towards Trojan-Free Trusted ICs:

Problem Analysis and Detection Scheme. In Design, Automation and Test in Europe, 2008. DATE
’08, pages 1362 –1365, mar. 2008. doi: 10.1109/DATE.2008.4484928.

51. Xuehui Zhang and Mohammad Tehranipoor. RON: An on-chip ring oscillator network for hardware
Trojan detection. In Proc. Design, Automation & Test in Europe Conf. & Exhibition (DATE), pages
1–6, 2011. URL http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5763260.

Integrated Honeypot based Malware Collection

and Analysis

Martin Brunner, Christian M. Fuchs, Sascha Todt

Fraunhofer AISEC,
Parkring 4, 85748 Garching (near Munich), Germany

{firstname.lastname}@aisec.fraunhofer.de, sascha.todt@gmx.de
http://www.aisec.fraunhofer.de

Abstract. Timely intelligence on emerging trends in the malicious landscape is an essential
prerequisite for successful malware defense and IT early warning. This is commonly gained
by collection and examination of current real-world attack data and a preferably meticu-
lous analysis of the most recent samples. However, the ongoing sophistication of malware
led to intensive obfuscation and anti-debugging measures and also resulted in a complex
and multi-staged malware execution life-cycle. To address this issue we present an ongoing
research activity named AWESOME (Automated Web Emulation for Secure Operation of a
Malware-Analysis Environment). It is a novel approach for integrated honeypot based mal-
ware collection and analysis, intended to cover the entire malware execution life-cycle. Our
assumption is that the ability to track this entire life-cycle facilitates a better understanding
of current and emerging malware. We introduce our design thereby outlining its benefits as
well as design considerations.

1 A Survey on Current Malware

1.1 Initial Situation

Cyber crime has become one of the most disruptive threats today’s Internet com-
munity is facing. The major amount of these contemporary Internet-based attacks
is thereby attributed to malware, which is usually organized within a botnet in
large-scale scenarios. Such botnet-connected malware is on their part utilized for
infecting hosts and instrumenting them for various malicious activities: most promi-
nent examples are Distributed Denial of Service (DDoS) attacks, identity theft, es-
pionage and Spam delivery [4,16,25]. Botnet-connected malware can therefore still
be considered the major threat on today’s Internet. Due to the ongoing spread
of IP-enabled networks to other areas it can be expected, that the threat posed by
botnet-connected malware will intensify and moreover reach further domains in pub-
lic and private life. Thus, there is a fundamental need to track the rapid evolution of
these pervasive malware based threats. Especially timely intelligence on emerging,
novel threats is essential for successful malware defense and IT early warning. This
requires both, acquisition and examination, of current real-world malware samples
in sufficient quantity and variety.

68 Martin Brunner, Christian M. Fuchs, Sascha Todt

1.2 Malware Evolution

Due to the predominant economic motivation for malicious activities backed by
organized cyber crime also the sophistication of malware and the respective propa-
gation methods continuously evolved, hence increasingly impeding malware defense.
Thereby the invested effort and the achieved result must be in a reasonable relation
for a professional attacker. Thus we experience the phenomena of a moving target.
That is, cyber criminals chose their targets and attack vectors according to the best
economic relation and an ongoing paradigm shift towards client-side and targeted
attacks has been witnessed in recent years [4]. In any way widely spread malware
is most effectively managed within a botnet, therefore a newly compromised host is
still likely to become a botnet-member. Several work indicates thereby an ongoing
specialization of the various groups in the underground economy offering ”Mal-
ware as a Service” and ”pay per install” schemes including elaborated models for
pricing, licensing, hosting and rental [5,14,16,17]. This involves professional main-
tenance, support and service level agreements for the purchasable malware itself as
well as innovations in the maintenance of infected victim hosts. Therefore there is
(i) one group specializing on the development of the actual malware, (ii) a second
group deals with the operation platform and the distribution of malware (i.e., to
establish botnets) and (iii) a third group focuses on suitable business models. As a
result also the actual malware itself evolved with respect to obfuscation techniques
and anti-debugging measures. That is, current malware checks for several conditions
before executing its malicious tasks, such as hardware resources of the victim host,
Internet connectivity or whether it is executed within a virtualized environment
[13,21,29]. In the end this evolution led to a complex and multi-staged malware
execution life-cycle.

1.3 Execution Life-Cycle of Modern Malware

With respect to recent advances in malware evolution and findings of related work
[5,23] we model the execution life-cycle of today’s (autonomous spreading) malware
as depicted in Figure 1. A common setting consists of three phases:

(i) Propagation and exploitation: This initial phase covers the spread of a mali-
cious payload (e.g., via a worm) that exploits one or multiple vulnerabilities. In this
context a vulnerability encompasses technical flaws in operating systems, network
services and user applications as well as social engineering techniques. Successful
exploitation commonly results in a shellcode getting placed on the victim host which
gets then extracted and executed, including possible decryption and de-obfuscation
routines.

(ii) Infection and installation: As a result of executing the injected shellcode a
binary is downloaded by the victim host. This binary is typically a so-called dropper
or downloader, which contains multiple malware components and is intended to

Integrated Honeypot based Malware Collection and Analysis 69

disable the security measures on the victim host, to hide the malware components
and to obfuscate its activities before launching the actual malware. As there is
an emerging trend that multiple cyber criminals instrument a single victim host
for their malicious purposes several droppers may be installed (in parallel) within
this step. Once the dropper is executed it extracts and installs further components
responsible for hardening and updating tasks, thereby preparing the system for the
actual malware. After finishing all operations the dropper contacts a remote site
in order to validate the victim host and retrieve information on how to retrieve
the actual malware. Once downloaded, the malware is executed by the dropper
component installing the malware’s core components. Finally these core components
remove all other (non-vital) components resulting from previous stages and the
malware is operational.

(iii) Operation and maintenance: Initially, the malware’s core components har-
vest valuable (i.e., marketable) information and send it to a remote server under the
control of the attacker in case the attacker loses control over the compromised host
later on. Next, the malware attempts to establish a C&C channel awaiting further
instructions, such as launching malicious actions and maintenance operations.

The various steps of the outlined malware execution life-cycle include many
checks and measures each intended to maximize the success of the malware instal-
lation, ensuring a reliable operation and to protect the cyber criminals from being
tracked down. In particular there are several apparent advantages for an adversary.
First, there is no need to distribute the core malware components in the first phase
thereby impeding successful collection and thus detection and mitigation of the
malware. In addition the malware can be distributed more selectively and targeted
thereby ensuring the victim host’s authenticity. After all, the outlined malware ex-
ecution life-cycle introduces several challenges for malware collection and analysis.

2 Challenges in Malware Capture and Analysis

Honeypots have been proven to be a fundamental part for malware collection as
they can provide valuable information on current attacks that would have been
difficult to acquire otherwise [28]. This enables further analysis and examination of
the collected malware samples finally resulting in the ability to anticipate recent
trends in the malicious landscape. While mostly server based, low-interaction (LI)
honeypots have been instrumented for the collection of undirected, widely spread
malware, they are limited in the scope of attacks they can cover. Hence new types of
honeypots, such as client honeypots and high-interaction (HI) honeypots, emerged
to face the evolving sophistication of malware. Especially the latter can provide
more valuable information than LI honeypots while posing much more risk for the
operator as well as for third party systems getting compromised.

70 Martin Brunner, Christian M. Fuchs, Sascha Todt

Fig. 1. Execution Life-Cycle of Modern Malware

A major issue, that makes malware analysis a challenging task, is the ongoing
arms race between malware authors on the one hand and malware analysts on the
other hand. That is, while analysts use various techniques to quickly understand
the threat and intention of malware, malware authors invest considerable effort to
camouflage their malicious activity and impede a successful analysis [8,21].

In addition malware should ideally be granted unhindered access to all requested
resources during runtime in order to gain a comprehensive analysis covering the full
life-cycle. While this could easily be achieved by allowing full interaction between the
malware and Internet-connected third party systems, this is not a viable approach
in setups which can not neglect liability issues. However, if a given malware sample
can not retrieve all requested resources during its execution life-cycle, it may behave
different or refuse to execute at all.

Infrastructures for large-scale malware collection can satisfy the requirements
for automated tracking of malware, which has been demonstrated by existing, ad-

Integrated Honeypot based Malware Collection and Analysis 71

vanced approaches [1,7,12] handling vast amounts of malware of varying sophistica-
tion. Complementary to the therein covered research topics our presented approach
addresses the following issues:

(i) Despite being executed within an isolated environment a given sample must
be supplied with (all) requested network services during analysis. Otherwise achiev-
ing high quality results may be impeded due to a restriction of resources and lead to
different malware behavior or even a refusal of execution. While certain services can
be offered using sinkholing techniques, such approaches are usually purely network
based. Thus reactions to malware initiated attempts remain static during runtime.
That is, they present pre-defined, commonly used services which are usually queried,
and are unable to handle any other requests accordingly.

(ii) HI honeypots pose, beside complexity and maintenance issues, a high op-
erational risk which is often inadequately addressed. While there are several ways
to mitigate this issue, the remaining risk is still higher compared to LI honeypots.
Beside ethical aspects, this also causes legal and liability issues for the operating
organization.

(iii) Malware collection and analysis is commonly separated, thus losing the
system context (i.e., file handles, requests, sockets) of the victim host. While such
separation is not necessarily a limitation (i.e., may not be mandatory to gain qual-
itative analysis results), we argue this loss of information hinders analysis, may
degrade analysis results or even prevent analysis of certain malware.

3 A Holistic Approach for Integrated Malware Collection
and Analysis

3.1 Goals

Our overall goal is to capture and dynamically analyze malware at a large-scale
in order to identify trends of current and emerging malware. Thereby we aim to
cover the entire execution life-cycle of novel malware in an automated way within a
controlled environment. That is, we want to track malware communicating via un-
known (C&C) protocols as well. In order to minimize harm to third parties malware
should by default have no Internet access during analysis. The whole procedure in-
tends to trick a sample into believing to run on a real victim host with full Internet
access.

3.2 Basic Concept

In order to identify the services and protocols required in the next step within the
execution life-cycle, we intend to harvest information on malware logics directly
during execution. Contrary to purely network-based concepts, our approach addi-
tionally operates at binary level, directly interacting with the malware’s host system.

72 Martin Brunner, Christian M. Fuchs, Sascha Todt

Fig. 2. General Design of the Presented Approach

Thus it aims to integrate network-based analysis and binary analysis, as in [30]. As
depicted in figure 2, the key component of AWESOME is based on a HI honeypot
and a virtual machine introspection (VMI) framework. It integrates the honeypot
based malware collection with dynamic malware analysis. This system is designed
to enable automated malware collection and analysis, preserving the context of the
exploited system. We enhance the solution with a transparent pause/resume func-
tionality which is instrumented to determine and - if appropriate - interrupt the
program flow. This enables extraction and alteration of program logics and data
within the victim environment during runtime. It is specifically valuable for ex-
tracting protocol information and cryptographic material used by the malware, in
order to determine the used protocol type and to intercept encrypted communi-
cation. Extracted protocol information is forwarded to a service handler (SH) and
sinkholing service in order to maintain full control over all interactions between
the malware and the outside world. For handling unknown traffic as well, finite
state machines (FSM) are automatically derived from the observed traffic and used
for service emulation. Automating the whole process of integrated collection and
analysis aims towards handling large amounts of malware, thus making our system
scalable.

Integrated Honeypot based Malware Collection and Analysis 73

3.3 Added Value

The system context of the malware collection facility persists, and is also used in the
subsequent analysis. Integrated collection and analysis is similar to the approach
used in HI honeypots and thus is more closely aligned to real-world scenarios. In
addition we achieve (increased) transparency during analysis due to the use of VMI.
We consider this to be a benefit, since we argue that VMI based analysis is more
likely to remain undetected by malware and requires no trusted supportive com-
ponents inside the sample’s context of execution, compared to other techniques,
that have been evaded [11]. Hence the approach is more likely to observe the entire
malware execution life-cycle. Furthermore we are able to extract and inject data as
well as instructions from or into the memory of the infected virtual machine (VM)
during runtime, which can be used to tap and manipulate encrypted C&C traffic.
Since our approach depends on no analysis components within the VM we believe it
to be more secure, while also expecting better overall performance. Moreover we are
able to control any interaction between the malware and third party systems and
thus fulfill legal and liability constraints. Since our approach is applied directly at
the instruction level we are aware of the actions initiated by the malware. Thus we
can provide the according services and even service novel communication patterns.
After all, the risk resulting from HI honeypot operation is minimized.

3.4 Design and Implementation

Setup For malware collection we chose to apply the taint-map based approach of
the ARGOS HI honeypot [26] to achieve our primary goal, i.e., handling unknown
malware. While popular LI honeypots have proven to be efficient means for mal-
ware collection, their knowledge-based approach has also drawbacks regarding the
quantity and diversity of the collected malware [32]. ARGOS allows the detection
of both known and unknown (0-day) attacks but is independent of special collection
mechanisms. Malware analysis is conducted based upon Nitro [24], a KVM-based
framework for tracing system calls via VMI. In particular we determine whether
a given action initiated by the currently analyzed malware requires Internet ac-
cess. Since Nitro is based on KVM, it can cooperate with ARGOS, which relies
on QEMU. The service provisioning component manages all malware initiated at-
tempts requesting resources on the Internet. Malicious attempts are handled via
an appropriate sinkholing service spawned by Honeyd [27] and unknown traffic
patterns may be handled utilizing ScriptGen [20]. For our setup we made several
modifications to the utilized components.

(i) Since ARGOS is more time-consuming than traditional approaches and thus
detectable by an abnormal latency and timing-behavior, a pause and resume func-
tion has been implemented.

(ii) Once the taint-map reports tainted memory being executed, we activate the
analysis functionality, provided by the VMI framework.

74 Martin Brunner, Christian M. Fuchs, Sascha Todt

(iii) Simple interpretation and filtering of system calls and their parameters is
conducted directly within hypervisor space, while more complex analysis is per-
formed via the VMM in the host environment [15].

The entire process consists of three parts (collection, analysis and service pro-
visioning) and is structured as described below. The steps are repeated, thereby
iterating throughout the entire life-cycle of the malware.

Malware Collection To overcome the poor performance of ARGOS we deploy a
two staged malware collection network, i.e., a hybrid honeypot system, similar to ex-
isting approaches such as [2,18,31]. We take advantage of our preexisting honeyfarm
infrastructure [3] which utilizes a large-scale network telescope employing various
different LI honeypots. This infrastructure is used to filter noise and known, thus
uninteresting attacks. Only novel incidents are forwarded to ARGOS, thus reducing
the overall load on it.

Malware Analysis Dynamic malware analysis utilizing virtualization can be rec-
ognized and thus evaded by environment sensitive malware [13,15,21,29]. Hence our
goal is to achieve a preferably transparent dynamic malware analysis, whereas we
consider VMI as the currently most promising approach to evade malware’s anti-
debugging measures. We chose Nitro since it offers several advantages regarding
performance and functionality, compared to other publicly available tools such as
Ether [10], as stated in [24]. As Nitro is based on KVM we have - beside guest
portability - full virtualization capability thanks to the host CPU’s virtualization
extensions and expect reasonable performance. During the analysis process we ex-
pect a malicious binary to be shellcode or a dropper rather than the actual malware
binary. This initially retrieved binary is then decoded and usually contains a URL
pointing at the resource used for deploying the next stage of the malware. In the sec-
ond iteration, execution of this binary continues after it has been downloaded and
the VM has been resumed. The resulting system call trace produced by Nitro is then
examined for routines related to connection handling. If present we transparently
pause execution of the VM and forward related traffic to the service provisioning
component.

Service Provisioning Malware-driven outbound requests are evaluated to prevent
harm to third party systems. For these checks we rely upon existing measures, such
as IDS or a web application firewall. As we are well-aware that such measures won’t
be sufficient to tell apart benign and malicious flows in every case, we may build on
existing approaches, such as [19]. We assume that a purely passive request (e.g., a
download) on a throttled Internet uplink does not cause any harm to a third party.
It is thus considered to be benign and handed over to the external service handler
(see figure 2). Since the external SH has Internet access, it resides in a dedicated

Integrated Honeypot based Malware Collection and Analysis 75

network segment separated from the analysis environment. If a given request can not
be determined to be benign it is redirected to the internal service handler. The sole
task of these SHs is to fetch, prepare or provide information for the service emulator
(SE). The SE launches the requested service in order to deliver the appropriate
payload supplied by the SH. Afterwards the execution is transparently resumed.
Since these services can be extremely heterogeneous the SE is based on Honeyd as
a very flexible and scalable tool which is able to emulate or spawn arbitrary services,
given that a protocol template exists. The creation of templates for novel protocols is
a much more challenging task. Therefore we plan to instrument a tool, which derives
FSMs off observed traffic, such as ScriptGen or a similar approach [6,9,22]. Thereby,
each FSM represents the behavior of a given protocol on an abstract level while not
depending on prior knowledge or protocol semantics. Based on the generated FSMs
service emulation scripts for use in the SE can be derived. By integrating such
a tool into our approach we aim towards adding ’self-learning capabilities’ to the
service provisioning element. Obviously this (at least) requires one-time observation
of a given communication between the honeypot and the external system. Hence
a supervised back-channel for learning about novel protocols is needed. Once this
has been established and the appropriate FSM has been generated, we are able to
handle the new protocol as well. While this is a clear limitation we consider it to
be a reasonable trade-off.

4 Summary

We presented a novel approach for integrated honeypot based malware collection
and analysis which addresses several issues, namely the separation of collection
and analysis, the limitations of service emulation and the operational risk of HI
honeypots. The overall goal is to capture and dynamically analyze malware at a
large-scale while covering the entire execution life-cycle of a given malware. The key
contribution of the approach is the design of the framework as well as the integration
and extension of the stated tools. While this is an ongoing research activity and thus
still under development, several modifications to ARGOS and Nitro have already
been implemented and successfully tested indicating the feasibility of our approach.
Future work will include the completion and evaluation of the service emulation
component and the measures to prevent harm to third party systems. In particular
we will evaluate all described components and develop measures to validate the rule
set for analyzing outgoing requests.

References

1. M. Apel, J. Biskup, U. Flegel, and M. Meier. Early warning system on a national level - project amsel.
In Proceedings of the European Workshop on Internet Early Warning and Network Intelligence (EWNI
2010), January 2010.

76 Martin Brunner, Christian M. Fuchs, Sascha Todt

2. M. Bailey, E. Cooke, D. Watson, F. Jahanian, and N. Provos. A hybrid honeypot architecture for
scalable network monitoring. 2006.

3. M. Brunner, M. Epah, H. Hofinger, C. Roblee, P. Schoo, and S. Todt. The fraunhofer aisec mal-
ware analysis laboratory - establishing a secured, honeynet-based cyber threat analysis and research
environment. Technical report, Fraunhofer AISEC, September 2010.

4. BSI. Die lage der it-sicherheit in deutschland 2011. Bundesamt fuer Sicherheit in der Information-
stechnik, May 2011.

5. J. Caballero, C. Grier, C. Kreibich, and V. Paxson. Measuring pay-per-install: the commoditization of
malware distribution. In Proceedings of the 20th USENIX conference on Security, SEC’11, Berkeley,
CA, USA, 2011. USENIX Association.

6. J. Caballero, P. Poosankam, C. Kreibich, and D. Song. Dispatcher: enabling active botnet infiltration
using automatic protocol reverse-engineering. In Proceedings of the 16th ACM conference on Computer
and communications security, CCS ’09, pages 621–634, New York, NY, USA, 2009. ACM.

7. D. Cavalca and E. Goldoni. Hive: an open infrastructure for malware collection and analysis. In
proceedings of the 1st workshop on open source software for computer and network forensics, 2008.

8. X. Chen, J. Andersen, Z. Mao, M. Bailey, and J. Nazario. Towards an understanding of anti-
virtualization and anti-debugging behavior in modern malware. In Dependable Systems and Networks
With FTCS and DCC, 2008. DSN 2008. IEEE International Conference on, pages 177 –186, june
2008.

9. W. Cui, V. Paxson, N. C. Weaver, and Y. H. Katz. Protocol-independent adaptive replay of application
dialog. In In The 13th Annual Network and Distributed System Security Symposium (NDSS, 2006.

10. A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether: malware analysis via hardware virtualization
extensions. In CCS ’08: Proceedings of the 15th ACM conference on Computer and communications
security, pages 51–62, New York, NY, USA, 2008. ACM.

11. M. Dornseif, T. Holz, and C. Klein. Nosebreak - attacking honeynets. In Information Assurance
Workshop, 2004. Proceedings from the Fifth Annual IEEE SMC, june 2004.

12. M. Engelberth, F. Freiling, J. Göbel, C. Gorecki, T. Holz, R. Hund, P. Trinius, and C. Willems. The
inmas approach. In 1st European Workshop on Internet Early Warning and Network Intelligence
(EWNI), 2010.

13. P. Ferrie. Attacks on virtual machine emulators. In AVAR Conference, Auckland. Symantec Advanced
Threat Research, December 2006.

14. J. Franklin, A. Perrig, V. Paxson, and S. Savage. An inquiry into the nature and causes of the wealth
of internet miscreants. In Proceedings of the 14th ACM conference on Computer and communications
security, CCS ’07, New York, NY, USA, 2007. ACM.

15. C. M. Fuchs. Deployment of binary level protocol identification for malware analysis and collection
environments. Bacherlor’s thesis, Upper Austria University of Applied Sciences Hagenberg, May 2011.

16. P. Gutmann. The commercial malware industry. In DEFCON 15, 2007.
17. T. Holz, M. Engelberth, and F. Freiling. Learning more about the underground economy: A case-study

of keyloggers and dropzones. Technical report, University of Mannheim, Laboratory for Dependable
System, 2008.

18. X. Jiang and D. Xu. Collapsar: a vm-based architecture for network attack detention center. In
Proceedings of the 13th conference on USENIX Security Symposium - Volume 13, SSYM’04, Berkeley,
CA, USA, 2004. USENIX Association.

19. C. Kreibich, N. Weaver, C. Kanich, W. Cui, and V. Paxson. Gq: practical containment for measur-
ing modern malware systems. In Proceedings of the 2011 ACM SIGCOMM conference on Internet
measurement conference, IMC ’11, New York, NY, USA, 2011. ACM.

20. C. Leita, K. Mermoud, and M. Dacier. Scriptgen: an automated script generation tool for honeyd. In
Proceedings of the 21st Annual Computer Security Applications Conference (ACSAC), Washington,
DC, USA, 2005. IEEE.

21. M. Lindorfer, C. Kolbitsch, and P. Milani Comparetti. Detecting environment-sensitive malware. In
Recent Advances in Intrusion Detection (RAID) Symposium, 2011.

22. P. Milani Comparetti, G. Wondracek, C. Kruegel, and E. Kirda. Prospex: Protocol specification
extraction. In Proceedings of the 30th IEEE Symposium on Security and Privacy, pages 110–125,
Washington, DC, USA, 2009.

Integrated Honeypot based Malware Collection and Analysis 77

23. G. Ollmann. Behind today’s crimeware installation lifecycle: How advanced malware morphs to remain
stealthy and persistent. Whitepaper, Damballa, 2011.

24. J. Pfoh, C. Schneider, and C. Eckert. Nitro: Hardware-based system call tracing for virtual machines.
In Advances in Information and Computer Security, volume 7038 of Lecture Notes in Computer Sci-
ence. Springer, Nov. 2011.

25. D. Plohmann, E. Gerhards-Padilla, and F. Leder. Botnets: Detection, measurement, disinfection &
defence. European Network and Information Security Agency (ENISA), 2011.

26. G. Portokalidis, A. Slowinska, and H. Bos. Argos: an emulator for fingerprinting zero-day attacks. In
Proc. ACM SIGOPS EUROSYS’2006, Leuven, Belgium, April 2006.

27. N. Provos. A virtual honeypot framework. In Proceedings of the 13th USENIX Security Symposium,
2004.

28. N. Provos and T. Holz. Virtual honeypots: from botnet tracking to intrusion detection. Addison-Wesley,
2008. ISBN 9780321336323.

29. J. Rutkowska. Red pill... or how to detect vmmusing (almost) one cpu instruction, 2004.
http://invisiblethings.org.

30. D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang, J. Newsome, P. Poosankam,
and P. Saxena. Bitblaze: A new approach to computer security via binary analysis. In Proceedings of
the 4th International Conference on Information Systems Security., 2008.

31. M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. C. Snoeren, G. M. Voelker, and S. Savage.
Scalability, fidelity, and containment in the potemkin virtual honeyfarm. In Proceedings of the 20th
ACM symposium on Operating systems principles, SOSP ’05, New York, NY, USA, 2005. ACM.

32. J. Zhuge, T. Holz, X. Han, C. Song, and W. Zou. Collecting autonomous spreading malware using
high-interaction honeypots. In Proceedings of the 9th international conference on Information and
communications security, ICICS’07, Berlin, Heidelberg, 2007. Springer-Verlag.

Predentifier: Detecting Botnet C&C Domains

From Passive DNS Data

Tilman Frosch, Marc Kührer, and Thorsten Holz

Horst Görtz Institute (HGI),
Ruhr-University Bochum, Germany
{firstname.lastname}@rub.de

Abstract. The Domain Name System (DNS) is mainly used for benign and legitimate In-
ternet activities. Nevertheless, it also facilitates malicious intentions. Domain names have
started to play an increasingly important role in the Command and Control (C&C) infras-
tructure of botnets. These domains can be added to blocklists or taken down, yet attackers
can simply evade the countermeasures by creating hundreds of new domains every day.
We propose a framework called Predentifier to detect C&C domains at an early stage.
It combines a host’s DNS configuration properties with secondary data to derive a set of
distinctive features that can be used to describe the behavior of a host. We employ methods
of statistical learning to determine with high reliability, whether a domain belongs to a C&C
server or if it is benign. We further show that it is possible to leverage passive DNS data to
identify C&C domains without infringing on employment or customer rights.

1 Introduction

In recent years, domain names have started to play an increasingly important role
in Command and Control (C&C) mechanisms of botnets, i.e., networks of compro-
mised machines under the control of an attacker (often called botmaster) [6,8,15].
Botnets are responsible for some of the major problems on the Internet: they are
used to propagate spam and to steal of banking credentials and accounts to a va-
riety of online services, among other criminal activities like Distributed Denial of
Service (DDoS) attacks [14]. Many botmasters today maintain control over their
criminal assets by using DNS-based C&C structures to prevent efforts to take down
the botnet. A timely identification of C&C domains can allow for the detection of
a botnet even before it is put to use on a large scale. We introduce Predentifier
to effectively identify C&C domains at an early stage – without infringing on em-
ployment or customer rights. The approach combines DNS configuration properties
of a host with secondary data like WHOIS and geolocation information. We derive
a set of 14 distinctive features and employ methods of statistical learning to decide
with a high confidence, whether a domain is used for C&C or is affiliated with a
benign, legitimate participant on the Internet.

2 Related Work

The idea of performing passive DNS replication to detect malware was introduced
by Weimer [16] in 2005. Zdrnja et al. [19] adopted this idea and proposed a passive

Predentifier: Detecting Botnet C&C Domains From Passive DNS Data 79

DNS system to trace hosts associated to botnet C&C servers. To identify hosts
and domains which are participating in Fast-Flux networks, Holz et al. [11] ana-
lyzed DNS records aggregated with further information like Autonomous System
Numbers (ASN) and geolocation data. Yadav et al. [18] proposed an approach to
detect domain fluxes in DNS traffic by identifying domain names which have been
generated algorithmically. Felegyhazi et al. [7] investigated DNS properties and
registration information to explore the potential of proactive domain blacklisting.
Antonakakis et al. [3] presented the dynamic reputation system Notos based on
DNS and secondary data provided by honeynets and malware analysis services,
which analyzes network and zone features to describe characteristics of domains.
In a second paper, Antonakakis et al. [4] introduced a system which attempts to
detect malicious domains by analyzing passive DNS data gathered at authoritative
nameservers and top-level domain servers. Bilge et al. [5] proposed the architecture
Exposure which analyzes passive DNS data to automatically distinguish between
malicious and benign domains. The authors introduce time-based and DNS-based
features.

Besides implementations using (passive) DNS data, other approaches have been
published focusing on lexical and host-based features to distinguish between benign
and malicious hosts [12,10].

3 Motivation: DNS Features of Botnet Domains

The intuition of our approach is that the requirements towards hosts used for con-
trolling botnets differ from the requirements a user has towards a server providing
benign content. These requirements are also reflected in the DNS configuration.
While a well-established site rarely changes the IP address(es) it resolves to, the
maintainer of a botnet C&C server may suddenly need to change an A-record in
order to maintain continuous control over the bots. Be it because the legitimate
owner of a compromised host used as C&C server disconnects his system from the
Internet, or that a server, legitimately acquired by the botherder, is seized by law
enforcement officials in an attempt to shut down the botnet. As such a configu-
ration change needs to propagate quickly, this policy is reflected in a lower TTL
value in the DNS configuration and may, for example, also be reflected in the re-
fresh value that determines the time between two zone transfers requested from
secondary nameservers.

Redundancy is defined differently for benign and C&C domains. This is reflected
in the amount of IP addresses a domain resolves to. A benign site can balance load
by simply resolving a hostname to a set of IP addresses in a round-robin fashion.
High-traffic sites are also often hosted on Content Delivery Networks (CDN) and
behave differently compared to ordinary hosts offering benign content [11]. Botnet
C&C servers will receive fewer requests than high-traffic sites, thus do not need load-

80 Tilman Frosch, Marc Kührer, Thorsten Holz

balancing in the same way. What the botherder needs instead is a way to mitigate
takedowns of C&C servers currently in use. This can be achieved by changing the
A-record for this hostname. As a consequence, the average amount of IP addresses
being resolved for one malicious hostname at a time may be lower than the amount
of addresses seen in the context of a benign domain. However, this assumption highly
depends on the data set and whether there are any active fast flux [17] domains in
the set of malicious domains.

A hypothesis in the context of WHOIS data implies that benign domains tend
to be older than domains used for botnet C&C purposes [5]. While analyzing the
registration dates of the domains in our data sets, we indeed found that on average
the age of C&C domains is significantly lower.

Other properties that are expected to differ for benign and malicious domains are
the geographic locations of the IP addresses being resolved from one hostname and
their locations within the network as reflected by the ASNs. Servers used for benign
purposes and addressed by the same domain are often located in the same country.
This still holds true for massively loadbalanced setups and CDNs. Further on, a
legitimate business might rather choose to have all its hosting services provided by
one organization which will result in only a few ASNs or even only one. In contrast,
a botmaster tends to act opportunistic and use any host that is available and fits his
needs. A widely distributed architecture does not proof disadvantageous – on the
contrary, spreading C&C operations over more than one legislation may increase
the resilience against takedowns by law enforcement.

4 System Design

To generate detection models for C&C domains based on the assumptions and
observations in the previous section, Predentifier applies 14 distinctive features
derived from passive DNS, WHOIS, and geolocation data.

4.1 System Outline

Figure 1 outlines the architecture of Predentifier. In the offline phase, one of
the core components of our analysis system is the database storing labeled benign
and malicious domains. We generate a training set ST RAIN by randomly choosing
labeled benign and malicious domains from the database. We then attribute fea-
tures to the individual hostnames, based on passive DNS, WHOIS, and geolocation
information. From these information we create a detection model to be used by the
classifier. In a next step, we choose a test set ST EST of domains and also attribute
features to each element of the set. However, the labels Y

′
i are removed from the

set. We classify all elements of ST EST and compare the inferred class Yi with the
original labels Y

′
i of the test set to determine true and false positives. When used

Predentifier: Detecting Botnet C&C Domains From Passive DNS Data 81

as an online system, several passive DNS sensors, deployed in various networks, col-
lect DNS answers from the network traffic. Again, features are attributed to these
hostnames, which are then classified based on the previously built model.

Fig. 1. System architecture of Predentifier

4.2 Data Acquisition

A very common approach to acquire a set of benign hostnames is to use the TOP
20.000 domains from the Alexa traffic ranking [2]. Most of these sites, however,
make use of CDNs and other sites providing third-party content that consequently
are equally highly frequented as the site they serve content to. Some of these may
exhibit similar behavior than malicious domains, e.g., in terms of zone configuration.
We include the Fully Qualified Domain Name (FQDN) of each host that provided
content to these sites, so the training and test sets also contain these domains and
the model is created accordingly. Additionally to the 20.000 primary domains, we
found 40,881 domains that are used to provide third-party content to the high-
traffic domains or were part of a CDN. We verified that none of the resulting 60,881
domains was found on any of the publicly available C&C blacklists.

As malicious domain set we use a subset of domains accumulated from three
C&C server blacklists provided by abuse.ch [1]: their Malware Database C&C block-
list (AMaDa) as well as the dedicated ZeuS and SpyEye trackers.

82 Tilman Frosch, Marc Kührer, Thorsten Holz

4.3 Classifier

For the classification process we use k-Nearest Neighbor (kNN). kNN is one of the
most straight-forward supervised learning methods. The simplified basic assump-
tion is that samples defined by an n-dimensional vector which are closest in this
vector space must be similar, i.e., it determines the decision boundary locally. The
parameter k describes how many neighboring points should be taken into account.
Equation 1 shows the k-nearest neighbor fit Y for a classification for an unclassified
sample x, where Nk(x) is the neighborhood of x defined by the k-closest points in
the training set [9].

Y (x) =
1

k

∑
xi∈Nk(x)

yi (1)

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (2)

A common metric to define closeness is the Euclidean distance. Equation 2 shows
the Euclidean distance d of two vectors x, y consisting of values xi, yi.

A classification with k = 1 is not very robust as any new sample x is simply as-
signed to the class of the nearest element in the training set. kNN with k > 1 is more
robust as it assigns samples to the majority class of their k-closest neighbors [13].
A low value k will introduce more noise intro the results. On the other hand, a high
value of k renders kNN computationally more expensive. It also conflicts the basic
idea behind kNN, i.e., that points, which are near to each other, are more likely to
belong to a similar class than points with a higher distance.

4.4 Feature Selection

As already outlined in Section 3, properties observed from passive DNS data and
other sources reveal information to describe either malignance or benignity of a
domain. However, the choice among possible features is strongly determined by
data availability and level of disaggregation: the passive DNS data available to
us is aggregated with respect to the temporal dimension. Thus, we are not able to
analyze patterns of repeated usage, daily similarity in when and how often a domain
is accessed and similar features. Instead, we introduce a number of other features
that evolved from the available data.

As shown in Table 1, we identified a set of 14 distinct features of which nine
features have, to the best of our knowledge, never been tested in previous work
and can be considered novel. Fig. 2 outlines the arithmetic average and standard
deviation for each feature normalized to the global average of each feature, i.e.,
the arithmetic average of the feature value as found in the combination of both

Predentifier: Detecting Botnet C&C Domains From Passive DNS Data 83

Feature Name Description

1 digitratio Number of digits compared to length of domain

2 consonantrationovel Number of consonants compared to length of domain

3 consonantvocalrationovel Number of consonants compared to amount of vocals
4 ipcount Number of IP addresses the domain resolves to

5 ttl maxnovel Maximum TTL during observation (in sec.)

6 ttl minnovel Minimum TTL during observation (in sec.)

7 ttl diffnovel Max. TTL−min. TTL during observation (in sec.)

8 soa sn changesnovel Number of SOA S/N changes during observation

9 exp time minnovel Minimum expiry time of domain’s zone (in sec.)
10 rtry time min Minimum retry time of domain’s zone (in sec.)

11 rfrsh time minnovel Minimum refresh time of domain’s zone (in sec.)
12 countrycount Number of countries the domain is served from
13 asncount Number of ASNs the domain is served from

14 domainagenovel last seen date− domain creation date (in days)
Table 1. Features utilized by Predentifier

the benign and the malicious set. Normalization provides a better overview of the
differences between malicious and benign domains and eases the interpretation of
the different features as the features vary widely in scale.

Fig. 2. Mean-normalized average feature values and standard deviation

Lexical Features: Ma et al. [12] justify lexical features based on the observation that
malicious URLs tend to look differently compared to benign URLs. Our approach
does not deal with URLs as a whole but with a subset of the URL: the domain.
The argument is also confident for the domain since it may look different, especially
for domains resulting from a Domain Generation Algorithm (DGA). Our lexical

84 Tilman Frosch, Marc Kührer, Thorsten Holz

features include the number of digits compared to length of the domain, the amount
of consonants compared to length, and the number of consonants compared to the
amount of vocals, based on the assumption that these ratios differ between words
of a spoken language and (randomly) generated strings.

DNS Answer-based Features: Feature 4 consists of the number of IP addresses a
domain is resolved to during the observation period. The intuition for using this
feature is that legitimate websites receiving significant traffic tend to use several
hosts in parallel to balance load. A round-robin resolution appears as A-records of
one domain resolved to different IP addresses, where each database entry exhibits a
last seen timestamp of similar age. This still holds true for CDNs, although only for
a given geographic and network-topologic location. The amount of hosts that deliver
the same content to a user in a given area via a given ISP varies widely depending
on the time of day [11]. However, aggregated over an observation period of seven to
30 days, the amount of individual active IP addresses stays relatively constant for
a given website. Consequently, CDN hosts and traditionally loadbalanced sites can
be assumed to behave similar with respect to feature 4. The number of IP addresses
per domain, however, varies highly depending on the actual domain name. For a
botmaster it is crucial that only few of the C&C servers appear in public. Thus,
a domain used in a C&C context is more likely to be resolved to only few IP
addresses at a time. The distinctiveness of this feature alone is of course limited, as
small benign websites also use just one IP address.

IP Address-based Features: IP address-based features are attributed to a domain
indirectly, such as the number of different countries and ASs a client is served from.
Sample data indicates that the amount of different countries and ASs a domain is
affiliated with is higher for benign domains. Yet, botmaster may take advantage
of heterogeneous jurisdictions by spreading C&C servers over several countries or
using any host available. This observation is also shared by Bilge et al. [5] with
regard to geolocation and by Antonakakis et al. [4] with regard to ASs.

Some high-traffic websites might do load-balancing multi-nationally, but most
will simply make use of CDNs to reduce load and latency. It follows that again
the large majority of benign domains is being served from one country and one
AS. However, the passive DNS database is fed by sensors at a variety of locations
which may each see a different set of IP addresses associated with a domain. As a
consequence, the amount of different ASNs and countries associated with a domain is
on average slightly higher for benign domains. However, standard deviation indicates
that these features can be volatile, as there exist many benign hostnames pointing
to exactly one IP address located in one country.

Zone-based Features: These features are derived from SOA resource records and
cover the minimum and maximum TTL, the difference between those values as well

Predentifier: Detecting Botnet C&C Domains From Passive DNS Data 85

as the number of serial number changes for the respective SOA record, and the
minimal values for expiry time, retry time, and refresh time.

A lower TTL value allows for a higher flexibility as it reduces caching time on
the client side, e.g., for hostname ↔ IP address relations. For a benign domain, the
DNS configuration for an individual host will seldom change. Under these premises,
a high TTL reduces the load on the domain name system while the slow propaga-
tion of changes is tolerable. In a C&C setting, the maintainer may be confronted
with less foreseeable events that make it necessary to update a record faster. The
feature, however, is not distinctive on its own: a very low TTL is also used for load-
balancing via round-robin DNS [5]. Besides using the maximum and the minimum
of a domains’s TTL, we record the difference between both TTLs which indicates
a change in zone behavior.

Refresh time, retry time, and expiry time are similar indicators for desired flexi-
bility but on a nameserver infrastructure level. The refresh time is the equivalent of
TTL for SOA records, i.e., the time a secondary nameserver will wait before query-
ing the primary server for changes. The retry time determines how long a host will
wait before retrying after a failed zone transfer. 80% of the domains in the malicious
set are configured with a retry time ≤ 1800 seconds while the same is true for only
about 21% of the benign samples. The tendency towards lower retry times observed
with malicious zones can again be interpreted as an attempt to make the complete
setup more resilient against failures and offer the possibility for faster recovery. The
expiry time determines how long a secondary nameserver will continue to try to
complete a zone transfer from a primary server. The average expiry time in the be-
nign random set is by factor 2.13 higher than in the malicious set, and the standard
deviation of the non-normalized values indicates that the respective value intervals
do not overlap.

The amount of SOA serial number changes indicates how often a zone is updated
during the observation period. Our data indicates that this differs for benign and
malicious zones, thus we use the amount of serial number change as a feature.

WHOIS-based Features: The registration date of a domain is provided by many
registries in the WHOIS answer and can be used to calculate the age of a domain.
Bilge et al. [5] observe that malicious domains often have a short life span. It follows
that one can expect to observe a lower age in this group of domains when compared
to benign domain names that are often part of a well-established infrastructure.
While we have observed domains blacklisted for C&C with a domain age above
3000 days, the averages of the benign and malicious random set vary in the scale
of years. The average age of a benign domain in the sample is 2276 days, while the
average age of a malicious domain is 416 days with a median of 306 days (2086 days
for the benign set). Also, only 3% of the random benign domains are up to a year
old or younger while this is true for more than 62% of the malicious domains.

86 Tilman Frosch, Marc Kührer, Thorsten Holz

5 Evaluation

We first test the soundness of the approach by performing 10-fold cross validation
on different sets of hosts. We then test the effectiveness in a realistic scenario. In
a real-world scenario, Predentifier would be required to train on data observed
in the past, i.e., the time period [t.now − n, ..., t.now] and use the resulting model
to correctly identify C&C servers from data observed in the time period [t.now +
1, ..., t.now +m], where t.now describes the time being, n is a value indicating the
end of the observation period in the past, and m is the time period after that
the classifier is re-trained. We simulate this scenario by using data from domains
observed between a date in the past dp and a date even further in the past dp − n
to compile a training set and test it against data observed from domain names first
seen at the time dp + 1 until the day we performed the evaluation. In a next step,
we evaluate the contribution our novel features offer to the classification results.

5.1 Evaluation Data

In the following, we refer to the 60,881 domains derived from the TOP 20,000
domains in the Alexa traffic ranking as the global benign set B. Furthermore, we
refer to the set of samples associated with any entry in any of the abuse.ch blacklists
as the global malicious set M. We refer to a labeled set of samples as training set
ST RAIN . When a set is referred to as test set ST EST it is an unlabeled set of samples.
The classification process assigns a sample x ∈ ST EST either to the benign or the
malicious class. We calculate the false positive rate as the percentage of benign
samples that is falsely classified as malicious and the detection rate or true positive
rate as the percentage of malicious samples that is correctly classified.

5.2 Cross Validation

N -fold cross validation is a technique frequently used to evaluate the effectiveness
of a proposed detection mechanism.Applying this technique splits the data into N
random partitions. N − 1 partitions are used to train the classification algorithm,
and the resulting model is then tested on the remaining partition. The N resulting
detection and false positive rates are then averaged.

We use 10-fold cross validation to evaluate the detection accuracy on data ob-
served during a 30-day period. In the context of this evaluation, we also determine
which value k in kNN yields the best classification results. For every test, the cross
validation set is the same and consists of identical partitions for every run, i.e.,
we randomize and partition the set once and keep this configuration for every run.
Thus, the only parameter that varies between the different cross validations is the
value of k.

The sets used for the cross validation contained the following amount of samples:
|ST RAIN | = 17487 and |ST EST | = 1943. These two sets consist of a total of 17,386

Predentifier: Detecting Botnet C&C Domains From Passive DNS Data 87

benign and 2,044 malicious domains. We evaluated false positive and detection rate
for classifications with kNN, where k ∈ [1, 2, ..., 15, 50, 150, 1500]. On this data set
a downward trend can be observed for k > 2.

The best detection rate of 93.6% in combination with a low false positive rate
of 0.5% was achieved with k = 2. The results from the 10-fold cross validation on
these two different sets show that the approach is indeed fit to detect botnet C&C
servers from passive DNS information in combination with secondary data. The
test on the second data set shows that good results can be achieved both when
classifying hosts, whose activity has been detected temporally near to each other
and also when classifying hosts that may last have been observed in a temporal
distance of up to 30 days.

5.3 Temporally Disjoint Data Sets

This kind of evaluation can be considered a reality check for our approach. A system
based on this approach should be able to successfully detect C&C servers it observes
in the future based on training data observed in the past. In order to represent
this scenario in a realistic manner, we randomly choose ten training sets, each
consisting of 500 benign and 500 malicious samples from domains observed between
2011-12-07 and 2012-01-15. We use the feature values determined for these samples
to calculate global average values for each feature. As test set we use all domains
observed between 2012-01-16 and 2012-02-07 that fulfill the requirement of having
at least five determinable host-based features. From this data we randomly choose
ten training sets and ten identical test sets. The latter consist of 1,185 benign and
822 malicious samples.We run kNN using each of the training sets as input and test
the resulting model on the test set. The evaluation result is reported as the average
detection and false positive rate calculated over these ten runs. In a real-world
application, one would also draw ten random sets and automatically evaluate these
training sets on disjoint test sets from the same period. While the classification
results vary only slightly between the ten different training sets, one would choose
the model that yields the best results. Thus, the reported average values can be
considered a conservative estimate.

We repeat this procedure for k = (1, 2, ..., 22). As already observed in the cross
validation, the best results can be achieved with a choice of k = 2: a detection rate
of ≈ 94.2% and false positive rate of ≈ 8.7%.

5.4 Feature Effectiveness

Approaches like Exposure [5] that rely on a substantial amount of time-based
features make it necessary to store each and every DNS answer observed in a net-
work. Due to storage constraints, we store the data of each DNS answer containing
an identical resource record only once. While this reduces the space complexity of

88 Tilman Frosch, Marc Kührer, Thorsten Holz

our approach, it renders the whole class of time-based features used by Bilge et
al. unavailable to us. We faced a similar challenge with respect to features used in
other approaches. Thus, we derived features from the available data to compensate
for the unavailable features.

We also utilize the data used in Section 5.3 to evaluate the contribution each fea-
tures makes to the classification process. Again, we use ten randomly drawn training
sets and give the resulting detection and false positive rates as the average from
these classifications. Additionally, we calculate the standard deviation as a measure
of volatility of the classification accuracy with respect to the training set. As k = 2
has been shown to yield the best results, we compare classification results using
kNN with k = 2. The baseline feature set contains the features 1, 4, 10, 12, and 13.
This is the intersecting set of the feature sets used in previous work with the feature
set that can be derived from the data available to us. Classification using only these
features results in a detection rate of 58.86% and a false positive rate of 7.21%.
However, the standard deviation of the detection rate is ≈ 27.41% and 2.72% for
the false positive rate. This shows that the classification result is highly dependent
on accidentally drawing a “good” random training set. We use this configuration
as baseline to assess the contribution of each individual feature, i.e., we examine
how the classification results change when we selectively add each novel feature or
each group of features derived from the same kind of data. For instance, the bars
labeled with +consonantratio (2) depict the detection and false positive rate of a
classification using the baseline feature set plus feature 2, which is consonantratio.
All results are shown in Fig. 3.

Fig. 3. Detection rate, false positive rate, and respective standard deviation by features used

Predentifier: Detecting Botnet C&C Domains From Passive DNS Data 89

The combination of all novel features added to the baseline feature set has a
significant positive effect on the detection rate by increasing it from 58.86% to
94.19%. However, the newly introduced features also slightly increase the false pos-
itive rate by 1.54%. Yet, compared to the baseline set, these complete features are
stable: when evaluating the same test set with ten different models based on ten
randomly chosen training sets, the standard deviation is 1.64% for the false positive
rate and only 0.86% for the detection rate while in the baseline feature set it is
2.72% and 27.41%, respectively. In summary, our features significantly improve the
classification results.

6 Conclusion

We showed how data acquired via passive DNS replication and additional data like
WHOIS and geolocation information can be used to identify botnet C&C domains.
Based on our observations, we proposed 14 effective features to determine domain
characteristics from sparse data. To the best of our knowledge, nine of these fea-
tures have never been used before – thus provide an enlargement of the available
feature choices. The proposed features can be divided into lexical features that are
derived from the domain name itself, DNS-answer-based features that are directly
derived from resource records, and IP address-based features like the host’s geo-
graphic location and its location within the Internet’s topology. Taking advantage
of these features, we developed an approach to detect botnet C&C servers using
machine learning methods. We tested the soundness of our approach on temporally
disjoint training and test sets, a scenario as similar as possible to a real-life appli-
cation environment of such a system. We found that our approach maintains a high
detection rate of 94.2% and a relatively low false positive rate of 8.75%. Passive
DNS replication is a very privacy-preserving technology, as only DNS answers are
stored – information that is publicly available within the domain name system. At
no point we make use of personally identifiable information. Our approach is thus
fit to be used in a privacy-sensitive context.

Acknowledgements

This work has been supported by the Federal Ministry of Education and Research
under BMBF Grant 01BY1111 (MoBE). We would like to thank Aaron Kaplan and
the CERT.at team for providing us access to their passive DNS database.

References

1. abuse.ch. AMaDa, SpyEye and ZeuS C&C Domain Blocklists. http://www.abuse.ch/, 2012.
2. Alexa. Top 1,000,000 sites. http://www.alexa.com/topsites, July 2011.

90 Tilman Frosch, Marc Kührer, Thorsten Holz

3. Manos Antonakakis, Roberto Perdisci, David Dagon, Wenke Lee, and Nick Feamster. Building a
dynamic reputation system for DNS. In USENIX Security Symposium, 2010.

4. Manos Antonakakis, Roberto Perdisci, Wenke Lee, Nikolaos Vasiloglou, and David Dagon. Detecting
malware domains at the upper DNS hierarchy. In USENIX Security Symposium, 2011.

5. Leyla Bilge, Engin Kirda, Christopher Kruegel, and Marco Balduzzi. EXPOSURE: finding malicious
domains using passive DNS analysis. In Network and Distributed System Security Symposium, 2011.

6. Evan Cooke, Farnam Jahanian, and Danny McPherson. The Zombie Roundup: Understanding, De-
tecting, and Disrupting Botnets. In USENIX Workshop on Steps to Reducing Unwanted Traffic on
the Internet(SRUTI), 2005.

7. Mark Felegyhazi, Christian Kreibich, and Vern Paxson. On the potential of proactive domain blacklist-
ing. In Proc. of the Third USENIX Workshop on Large-scale Exploits and Emergent Threats (LEET),
2010.

8. Felix C. Freiling, Thorsten Holz, and Georg Wicherski. Botnet Tracking: Exploring a Root-Cause
Methodology to Prevent Distributed Denial-of-Service Attacks. In European Symposium on Research
in Computer Security (ESORICS), 2005.

9. Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer, 2nd edition, 2009.

10. Yuanchen He, Zhenyu Zhong, Sven Krasser, and Yuchun Tang. Mining DNS for malicious domain
registrations. In Proc. of the 6th International Conference on Collaborative Computing: Networking,
Applications and Worksharing, 2010.

11. Thorsten Holz, Christian Gorecki, Konrad Rieck, and Felix C Freiling. Measuring and detecting
Fast-Flux service networks. In Network & Distributed System Security (NDSS), 2008.

12. Justin Ma, Lawrence K Saul, Stefan Savage, and Geoffrey M Voelker. Beyond blacklists: Learning to
detect malicious web sites from suspicious URLs. In Proc. of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2009.

13. C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval. Cambridge
University Press, 2008.

14. Jelena Mirkovic and Peter L. Reiher. A taxonomy of DDoS attack and DDoS defense mechanisms.
Computer Communication Review, 34(2), 2004.

15. Moheeb Abu Rajab, Jay Zarfoss, Fabian Monrose, and Andreas Terzis. A Multifaceted Approach to
Understanding the Botnet Phenomenon. In Internet Measurement Conference (IMC), 2006.

16. Florian Weimer. Passive DNS replication. In 17th Annual FIRST Conference on Computer Security,
2005.

17. Sandeep Yadav and A.L. Narasimha Reddy. Winning with DNS failures: Strategies for faster botnet
detection. In Proc. of the 7th International ICST Conference on Security and Privacy in Communi-
cation Networks, 2011.

18. Sandeep Yadav, Ashwath Kumar Krishna Reddy, A. L. Narasimha Reddy, and Supranamaya Ranjan.
Detecting algorithmically generated malicious domain names. In Proc. of the 10th annual conference
on Internet measurement, IMC ’10, 2010.

19. Bojan Zdrnja, Nevil Brownlee, and Duane Wessels. DNSParse. https://dnsparse.insec.auckland.
ac.nz/dns/technical.htm, 2007.

Statistical Modeling of Web Requests for

Anomaly Detection in Web Applications

Harald Lampesberger1, Markus Zeilinger2, and Eckehard Hermann2

1 Christian-Doppler Laboratory for Client-Centric Cloud Computing
Softwarepark 21, 4232 Hagenberg im Mühlkreis, Austria

h.lampesberger@cdcc.faw.jku.at
2 University of Applied Sciences Upper Austria

Softwarepark 11, 4230 Hagenberg, Austria,
{firstname.lastname}@fh-hagenberg.at

http://www.fh-ooe.at

Abstract. We present an algorithm for learning a statistical representation of web appli-
cation communication. The algorithm estimates the average probability of every observed
web request. If the estimated probability deviates from recent observations, the web request
is classified as anomalous. With every classification result, the statistical model parameters
are updated, so the algorithm gains on-line learning capabilities and it self-adjusts to the
observed data without prior training. Experiments on log data from a social networking web
site indicate high detection rates at acceptable false-alarm rates. Also, the evaluation shows
that the degree of abnormality of a web request does not explain the potential danger.

1 Introduction

Web applications traditionally use the Hypertext Transfer Protocol (HTTP) [6], an
application layer network protocol, to connect client and server software running
on different platforms. HTTP defines stateless and generic exchange of information
between an initiating client and a server. The client requests a specific resource,
identified by the so-called Unified Resource Identifier (URI), and the corresponding
server answers with a status code, meta information and possible entity content. To-
day’s web applications achieve session handling and dynamic content by evaluating
specific parts of the request. Some prominent examples are:

– Query in the Request-URI Path: The path is a hierarchically structured
sequence of string components with an optional query component. So-called
URL Rewriting breaks this query-convention by encoding the query as string
components to produce nice-looking URIs.

– Request Headers: meta data about the client or server, e.g. the so-called cookie
header enables session tracking over the stateless HTTP.

– Request Entity Content: The client can use the HTTP POST or PUT method
to send query-style or MIME-encoded data as request entity content.

A fundamental security problem is that the client is out of the server appli-
cation’s scope of control and cannot be forced to obey protocol specifications. If

92 Harald Lampesberger, Markus Zeilinger, Eckehard Hermann

client data is not handled correctly in any function of the web application, secu-
rity weaknesses are introduced. Some weaknesses might be exploited by an attacker
which leads to attack vectors like SQL/code injections, buffer overflows, cross-site
scripting and many more [13]. Some examples are given in Figure 1.

Ok: GET /fotos.php?action=view HTTP /1.1

Bad: GET /fotos.php?action=http ://195.33.221.4:8081/ bot.txt? HTTP /1.1

Bad: GET /userportal.php?id =4518 -999.9+ union+select+0-- HTTP /1.1

Bad: GET /fotos.php?action=search&album=%22%2F%3E%3 Cscript %3 Ealert

%281%29%3B%3C%2 FScript %3E HTTP /1.1

Bad: GET /images /../../../../../../../../../../ etc/passwd HTTP /1.1

Fig. 1. Examples for legitimate and malicious URI paths in HTTP requests.

1.1 Intrusion Detection

One approach in protecting web applications is to detect and prevent malicious
client data by so-called intrusion detection systems (IDS). IDS can be distinguished
into misuse detection and anomaly detection regarding their style of detection.
While misuse detection relies on proper signatures of malicious behavior, anomaly
detection tends to use methods such as machine learning or statistics to build a
model of normal behavior and report deviating patterns as anomalies.

According to Sommer and Paxson [18], both concepts are challenged in dif-
ferent ways. The detection performance of misuse detection completely depends
on currentness and coverage of signatures, but false-alarm rates are low. Anomaly
detection is prone to costly false-alarms, but it is more likely to recognize novel at-
tacks. Anomaly detection must especially consider a) the variability of input data,
b) the lack of training data, c) a very high cost of errors, d) the difficulty of sound
evaluation and e) descriptiveness of detection results.

1.2 Related Work

The payload-based anomaly detector (PAYL) by Wang and Stolfo [22] is the first
published method for analyzing application data and it uses byte frequencies for
payload profiling. Anagram [21] is an advancement of PAYL using n-grams instead
of single byte frequencies. Perdisci et al. [15] present McPAD, a method based on
2ν-grams to capture long range dependencies. The evaluations of PAYL, Anagram
and McPAD include HTTP data. The first web-focused detection system is intro-
duced by Kruegel and Vigna [9]. Their system combines six features like character
distribution or attribute lengths to calculate an anomaly score. The work establishes
a foundation for follow-up research: grouping similar anomalies [16], addressing con-
cept drift [12] and dealing with scarce training data [17].

Anomaly Detection in Web Applications 93

Ingham et al. [8] present an approach based on probabilistic finite automatons.
Duessel et al. [4] introduce an attributed token kernel for One-Class Support Vec-
tor Machines to evaluate protocol syntax. Song et al. [19] propose a combination
of multiple Markov chains named Spectogram. Krueger et al. [10] present a HTTP
reverse proxy that detects and automatically repairs malicious web requests com-
bining several detection methods.

The listed algorithms achieve good evaluation results, but they depend on train-
ing data. Especially for a fast-paced large-scale web application it can be impossible
to create an representative training data set. Görnitz et al. [7] realize this problem
and present an active learning strategy based on methods such as PAYL, Anagram
and McPAD.

2 The Algorithm

The presented method builds upon two assumptions:

1. Valid web requests obey grammar GHTTP and a specific web application effec-
tively uses only a small subset of language: L(GHTTP).

2. The prior probability of normal web requests is much higher than the probability
of an attack.

This approach considers a web request to be a sequence of protocol elements. To
cope with high-entropy elements, a web request is first transformed into a sequence
of abstract symbols by splitting and counting character classes based on the GHTTP

specification. Furthermore, the language model is a statistical representation of
symbol sequences considered normal for a specific web application. Inspired by
Begleiter et al. [1], the language model estimates the probability of an observed
web request of being normal. If the probability of the current sequence deviates
too much from previously processed sequences, the current sequence is classified as
either normal or anomalous and further actions, e.g. learning, are taken.

2.1 Request Transformation

Following RFC 2616 [6], several character classes are defined for GHTTP . In a prepro-
cessing step, we first use a modification of the separator class as defined in Equation
1 to tokenize the web request string. Distinguishing pre- and post-separators better
preserves URI path characteristics in the tokens. An example is given in Figure 2.

pre-separators = {SPACE TAB},
post-separators = {/?&;()<>@,:"[]{}=\}. (1)

In a second step, each token is reduced to an abstract symbol σ ∈ N
16 by count-

ing bytes that fall into classes as defined in Equation 2. A symbol σ is therefore a

94 Harald Lampesberger, Markus Zeilinger, Eckehard Hermann

statistical representation of bytes between two separators. This abstraction makes
high-entropy strings like randomized identifiers comparable. After this transforma-
tion, a web request is turned into a sequence of symbols q1:n = (σ1, . . . , σn).

σ ⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ[0] number of printable ASCII characters,
σ[1− 4] lexical letter index ∈ {a..z, A..Z} mod 4,
σ[5− 6] digit index ∈ {0..9} mod 2,
σ[7] capital letters ∈ {A..Z},
σ[8] lowercase letters ∈ {a..z},
σ[9] US-ASCII control characters,
σ[10] protocol-specific bytes ∈ {CR LF SPACE TAB},
σ[11] path-specific characters ∈ {./},
σ[12] protocol separators ∈ {?&;()<>@,:[]{}=\},
σ[13] single and double quotes,
σ[14] percent character,
σ[15] non-US-ASCII character.

(2)

�������	
����������
��	��������������������

��� �� ��	
���� ������
��	� ��� ������ � ������ ���

� � � � � � � � �� � � � � � � 	

Fig. 2. Transformation of a web request data into a sequence of entities.

Our algorithm maintains a dynamic alphabet A which is the set of symbols the
algorithm is aware of at a certain real-time moment. Initially, A = ∅ and symbols
are added and removed over time as the result of learning. Before the probability of
a sequence can be evaluated, each symbol must be replaced with a similar one from
the alphabet if possible. This requires a metric of similarity τ and a replacement
function Φ. The chosen similarity measure is the Tanimoto coefficient:

τ(σ1, σ2) =
σ1 · σ2

‖σ1‖2 + ‖σ2‖2 − σ1 · σ2

. (3)

Let TA be threshold of similarity for alphabet A and also a model parameter.
Two symbols σ1 and σ2 are considered identical if τ(σ1, σ2) > TA. So, the mapping
function Φ is defined as:

Φ(σ,A, TA) =

{
argmax

ν∈A
τ(σ, ν) if ∃ν ∈ A : τ(σ, ν) > TA,

σ otherwise.
(4)

Anomaly Detection in Web Applications 95

2.2 Language Model

For probability estimation we use Prediction by Partial Matching (PPM) [2] as
language model and Method-C [14] for smoothing zero-frequency counts. PPM-C
is a variable-order Markov model (VMM) of maximum order D, a suitable data
structure is a trie of depth D + 1. Every trie node, except the root, references a
symbol from alphabet A and maintains a frequency counter. Each path from root
to node represents an observed subsequence during training and the node’s count
shows how many times the subsequence appeared. Figure 3 shows an exemplary trie
for Markov order D = 2.

In a sequence q1:n = (σ1, . . . , σn), the probability of each symbol qi depends on
its context qi−D:i−1 of order D. The core idea of PPM-C is to back off to a smaller
context if the count of symbol qi in the context is zero. Estimating the probability
P̂ follows a recursive relation, where initially the current context order k = D and
k < 0 terminates the recursion:

P̂ (qi|qi−k:i−1) =

{
P̂k(qi|qi−k:i−1) if qi−k:i exists in trie,

P̂k(escape|qi−k:i−1)P̂ (qi|qi−k+1:i−1) otherwise.
(5)

root

a(3)

a(1)

b(1)

b(2)

c(2)

b(4)

b(1) c(2)

b(1) c(1)

c(3)

a(1)

a(1)

b(1)

b(1)

c(1)

a(1)

Fig. 3. PPM trie (order D = 2) for sequence abccaabcbb.

Let As be the specific alphabet at context s = qi−k:i−1 and N(sqi) be the count
value of the node referencing symbol qi in that context. Then the probability esti-
mates based on Method-C are:

P̂k(qi|s) = N(sqi)

|As|+
∑

σ∈As

N(sσ)
if qi ∈ As , (6)

P̂k(escape|s) = |As|
|As|+

∑
σ∈As

N(sσ)
otherwise. (7)

96 Harald Lampesberger, Markus Zeilinger, Eckehard Hermann

Finally, the average probability of a sequence q1:n is the arithmetic mean of its
symbol probabilities:

P̂ (q1:n) =
1

n

n∑
i=1

P̂ (qi|qi−D:i−1) . (8)

A VMM trained of all possible web requests delivers high mean probability
scores for legitimate sequences. A malicious web request likely contains symbols
that are unknown to the alphabet or in unexpected order. This results in a low
mean probability of the sequence.

2.3 Classification

The distribution of sequence probabilities depends on the web application and its
dynamics and a static threshold for classification of outliers is insufficient. We as-
sume that mean sequence probabilities of legitimate web requests are quite similar
and a Beta distribution can describe them. Unexpected web requests are accord-
ingly in low density regions of the distribution and have low confidence. To estimate
Beta(α, β), we first introduce real-time moments t1, . . . , tm that correspond to al-
ready symbolized web requests q(1), . . . , q(m). Therefore at moment tj, the historical
mean P̄ (j) over the last wsize predictions and sample standard deviation s(j) are
defined as:

P̄ (j) =
1

wsize

j∑
l=j−wsize

P̂ (q(l)), s(j) =

√√√√ 1

wsize − 1

j∑
l=j−wsize

(P̂ (q(l))− P̄ (j))2. (9)

Using the method-of-moments [5, p. 40], the Beta distribution parameters α̂(j)

and β̂(j) at moment tj are:

α̂(j) = P̄ (j)

(
P̄ (j) (1− P̄ (j))

s(j)2
− 1

)
, β̂(j) = (1− P̄ (j))

(
P̄ (j) (1− P̄ (j))

s(j)2
− 1

)
.

(10)

The confidence c(j) of a web request q(j) is then estimated from the Beta cumu-
lative distribution function:

c(j) = IP̂ (q(j))(α̂
(j), β̂(j)). (11)

We define three confidence thresholds as model parameters: base confidence
Tbase, warn confidence Twarn and alert confidence Talert. As a result, four confidence

Anomaly Detection in Web Applications 97

intervals are formed in the distribution and Figure 4 outlines them. A web request
is classified according to its confidence c(j):

classify(c(j)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Normal (learning) if c(j) ≥ 1− Tbase,

Normal (ignore) if 1− Tbase > c(j) ≥ 1− Twarn,

Anomalous (warn) if 1− Twarn > c(j) ≥ 1− Talert,

Anomalous (alert) otherwise.

(12)

To sum up, a Beta probability distribution over the last wsize predictions en-
ables classification of anomalous web requests without setting a static threshold for
sequence probability. Depending on a web request’s confidence, the grade of ab-
normality is known, it is assigned to one of four confidence intervals and further
learning or reporting actions can be taken.

Fig. 4. Exemplary Beta probability-density function graph where the four confidence intervals (alert,
warn, ignore and learning interval) are outlined.

2.4 Self-Adjustment and Learning

The language model requires updates to increase prediction precision and reduce
PPM escapes over time. Better predictions result in higher mean P̄ (j) and lower
sample variance s(j), the distribution and its confidence intervals get more and
more distinct and detection performance improves. The on-line learning approach
follows concepts of Vovk et al. [20].

98 Harald Lampesberger, Markus Zeilinger, Eckehard Hermann

Learning The first lazy teacher in the on-line learning scenario builds upon the
assumption that normal web requests are much more likely than anomalous ones.
Detections in the learning interval are automatically fed back into the language
model and alphabet A. The second lazy and slow teacher is a human expert who
eventually recognizes a false positive or false negative with possible delay. In the
case of a false positive, the sequence and novel symbols are added into the trie
and alphabet. The according node counters are incremented until the sequence
evaluates to the learning interval. If a false negative detection is corrected, the trie
nodes related to the sequence are decremented or removed from the trie, where
unreferenced alphabet symbols are also deleted.

Pruning Due to concept drift and numerical limits in computers, the trie and its
counters cannot grow indefinitely. If the most frequent node count in the trie exceeds
model parameter Tprune, pruning is performed. All node counters are integer divided
by two, zero nodes or branches are removed and unreferenced symbols are deleted
from the alphabet. So, escape probability mass increases again, the model is able
to adapt to a certain degree of concept drift and malicious sequences learned by
mistake will be dropped over time.

To sum up all introduced model parameters, the proposed anomaly detection
model M is parameterized by:

M〈TA, D, wsize, Tbase, Twarn, Talert, Tprune〉 .

3 Performance Evaluation

For evaluation of detection performance, we assume a binary classification case
where legitimate requests represent class Normal and warnings or alerts are consid-
ered as class Attack. A labeled data set is required to yield a confusion matrix as
shown in Table 1. The values in the matrix are mandatory for estimating perfor-
mance metrics.

Beside False Positive Rate (FPR), performance evaluation in this paper uses the
metrics Precision and Recall as recommended by Davis and Goadrich [3] for skewed
data sets:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
, FPR =

FP

FP + TN
. (13)

In PR space, a perfect algorithm has maximum Precision for the full range of
Recall, the curve goes through the upper-right corner and PR-AUC = 1. The PR-
AUC represents the capability of an algorithm to correctly separate the two classes
in the binary classification case.

Anomaly Detection in Web Applications 99

Table 1. Confusion matrix for the binary classification case.

Actual
Attack Normal

Predicted
Attack True Positive (TP) False Positive (FP)
Normal False Negative (FN) True Negative (TN)

3.1 The SOCIAL Data Set

Sound evaluation requires realistic data. The presented evaluation is based on log
files from a social networking web site because a log line contains parts of the web
request and is therefore sufficient for basic experiments. The web site combines
several web applications and is a worst-case for intrusion detection. The 12.5M log
lines were annotated manually to establish ground truth and instances of a pool of
57 attacks were inserted randomly. The resulting data set has 12,528,513 samples
where a total of 14,465 are considered anomalous. During the evaluation, a virtual
expert randomly gives feedback to the algorithm for 10% of false negatives and
66.6% of false positives.

A parameterized model 〈0.8, 4, 20000, 0.995, 0.99995, 0.99995, 5000000〉 yields the
best performance with Recall = 74.15% and Precision = 93.76% and detection re-
sults are shown in Figure 5. A total of 714 false positives cause FPR = 5.71 · 10−5.
The two least-recalled classes of annotated anomalies are non-critical scanning at-
tempts and an application-specific JavaScript fault.

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
r
e
c
is

io
n

0.95

c
=
0
.9
9
9
9
9
9

c
=
0
.9
9
9
9
5

c
=
0
.9
9
9

Precision-Recall Curve

PR−AUC=0.817

(a) Overall PR curve.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Sample Id 1e7

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rf

o
rm

a
n
c
e

0.95

Performance Time-Series

Precision

Recall

(b) PR time-series curve.

Fig. 5. Performance metrics for the SOCIAL data set.

Figure 5(b) is a time-series of Precision and Recall. It clearly shows that a Preci-
sion ≥ 90% is reached after about 1M processed samples. The presented algorithm

100 Harald Lampesberger, Markus Zeilinger, Eckehard Hermann

self-adjusts to the observed data. At the real-time moment of the last processed
sample, the language model has 19,650 trie nodes, an alphabet size |A| = 100 and
permits throughput of 29,200 logs/second.

4 Conclusion

The contribution of this article is an algorithm for anomaly detection in web ap-
plications and its evaluation. Experiments indicate decent results and an extended
version of this article is available in [11].

The evaluation has shown that the binary classification case is insufficient for
realistic scenarios. The confidence of a detection reflects its abnormality at that
specific real-time moment of the algorithm but it does not explain the impact or
dangerousness of the detected anomaly. Also for future research, the shift from web
applications to web services must be considered for intrusion detection.

References

1. R. Begleiter, R. El-Yaniv, and G. Yona. On prediction using variable order markov models. J. Artif.
Int. Res., 22(1):385–421, 2004.

2. J. G. Cleary and I. H. Witten. Data compression using adaptive coding and partial string matching.
IEEE Transactions on Communications, 32:396–402, 1984.

3. J. Davis and M. Goadrich. The relationship between precision-recall and roc curves. In Proceedings
of the 23rd international conference on Machine learning, ICML ’06, pages 233–240, New York, NY,
USA, 2006. ACM.

4. P. Duessel, C. Gehl, P. Laskov, and K. Rieck. Incorporation of application layer protocol syntax into
anomaly detection. In ICISS ’08: Proceedings of the 4th International Conference on Information
Systems Security, pages 188–202, Berlin, Heidelberg, 2008. Springer.

5. M. Evans, N. Hastings, and B. Peacock. Statistical Distributions, 3rd Edition. Wiley-Interscience,
2000.

6. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. Hypertext
Transfer Protocol – HTTP/1.1. RFC 2616 (Draft Standard), June 1999. Updated by RFCs 2817,
5785.

7. N. Görnitz, M. Kloft, K. Rieck, and U. Brefeld. Active learning for network intrusion detection. In
Proceedings of the 2nd ACM workshop on Security and artificial intelligence, AISec ’09, pages 47–54,
New York, NY, USA, 2009. ACM.

8. K. L. Ingham, A. Somayaji, J. Burge, and S. Forrest. Learning dfa representations of http for pro-
tecting web applications. Comput. Netw., 51:1239–1255, April 2007.

9. C. Kruegel and G. Vigna. Anomaly detection of web-based attacks. In CCS ’03: Proceedings of the
10th ACM conference on Computer and communications security, pages 251–261, New York, NY,
USA, 2003. ACM.

10. T. Krueger, C. Gehl, K. Rieck, and P. Laskov. Tokdoc: a self-healing web application firewall. In SAC
’10: Proceedings of the 2010 ACM Symposium on Applied Computing, pages 1846–1853, New York,
NY, USA, 2010. ACM.

11. H. Lampesberger, P. Winter, M. Zeilinger, and E. Hermann. An on-line learning statistical model to
detect malicious web requests. In Security and Privacy in Communication Networks - 7th International
ICST Conference, SecureComm 2011, London, 2011. Springer.

12. F. Maggi, W. Robertson, C. Kruegel, and G. Vigna. Protecting a moving target: Addressing web
application concept drift. In Proceedings of the International Symposium on Recent Advances in
Intrusion Detection (RAID), Saint-Malo, France, September 2009.

Anomaly Detection in Web Applications 101

13. MITRE Corporation. Common Vulnerabilites and Exposures. http://cve.mitre.org/, 2012. [Online;
accessed 12-Mar-2012].

14. A. Moffat. Implementing the ppm data compression scheme. Communications, IEEE Transactions
on, 38(11):1917 –1921, November 1990.

15. R. Perdisci, D. Ariu, P. Fogla, G. Giacinto, and W. Lee. Mcpad: A multiple classifier system for
accurate payload-based anomaly detection. Computer Networks, 53(6):864 – 881, 2009. Traffic Clas-
sification and Its Applications to Modern Networks.

16. W. Robertson, G. Vigna, C. Kruegel, and R. Kemmerer. Using generalization and characterization
techniques in the anomaly-based detection of web attacks. In Proceedings of the Network and Dis-
tributed System Security Symposium (NDSS), San Diego, CA, February 2006.

17. W. Robertson, F. Maggi, C. Kruegel, and G. Vigna. Effective anomaly detection with scarce training
data. In Proceedings of the Network and Distributed System Security Symposium (NDSS), San Diego,
CA, February 2010.

18. R. Sommer and V. Paxson. Outside the closed world: On using machine learning for network intrusion
detection. IEEE Symposium on Security and Privacy, pages 305–316, 2010.

19. Y. Song, A. D. Keromytis, and S. J. Stolfo. Spectrogram: A mixture-of-markov-chains model for
anomaly detection in web traffic. In Proc. of Network and Distributed System Security Symposium
(NDSS), 2009.

20. V. Vovk, A. Gammerman, and G. Shafer. Algorithmic Learning in a Random World. Springer New
York, Inc., Secaucus, NJ, USA, 2005.

21. K. Wang, J. J. Parekh, and S. J. Stolfo. Anagram: A content anomaly detector resistant to mimicry
attack. In Recent Advances in Intrusion Detection, volume 4219 of LNCS, pages 226–248. Springer,
2006.

22. K. Wang and S. J. Stolfo. Anomalous payload-based network intrusion detection. In Recent Advances
in Intrusion Detection, volume 3224 of LNCS, pages 203–222. Springer, 2004.

Automatic Generation of Generalizing Behavioral

Signatures for Early Warning Systems

Martin Apel and Michael Meier

1 Technische Universität Dortmund
Information Systems and Security, 44221 Dortmund

2 Fraunhofer FKIE, Cyber Defense
Neuenahrer Str. 20, 53343 Wachtberg

Abstract. Malware poses a major threat on the Internet today. Polymorphic obfuscation
techniques employed by malware render static malware analysis and detection approaches
based on static signatures ineffective. We present our malware early warning system that is
based on dynamic behavioral analysis and aims at deriving generalizing behavioral detection
signatures for malware. In the context of early warning a particularly desired property of
the generated signatures is not only to detect the malware binaries which are known during
signature generation, but also to detect unknown (polymorphic) variants of these known
binaries. We present a tentative experimental study on the generalization of behavioral
signatures and investigate the question, which share of a polymorphic malware family is re-
quired to be known for generating a signature showing an acceptable detection performance
for the whole family? Experimental results showed that for 90% of the considered malware
families less than 14 family members are required to generate a behavioral signature that de-
tects at least 80% of the whole family. The results are quite promising and encourage further
investigation of our approach for automatic generation of behavioral detection signatures.

1 Introduction

Though the term Early Warning System (EWS) has been used in the literature,
there is no common, accepted definition of what early warning is (and no differen-
tiation to, e.g., intrusion detection systems (IDS)). A vague definition of an early
warning information system (EWIS) is given by [6], who defines EWIS by sketching
its purpose: ’EWIS assists experts and policy makers in assessing desired options
for...’ several particular security measures. By outlining one particular realization
technique, [6] defines ’[an EWS] for IT security surveillance based on a specific pro-
cedure to detect as early as possible any deviation from usual or normal observed
frequency of phenomena.’ A more general operational definition of early warning
is used by [8]: ’In case of perceptible indicators, and no or (still) a low number of
victims, information must be distributed to help others - not yet victims including
response organizations in order to avoid a major crisis.’ We adopt the more declar-
ative definition of [3]: ’EWS aim at detecting unclassified but potentially harmful
system behavior based on preliminary indications and are complementary to intru-
sion detection systems. Both kinds of systems try to detect, identify, and react before

Automatic Generation of Generalizing Behavioral Signatures for EWS 103

possible damage occurs and contribute to an integrated and aggregated situation re-
port (big picture). A particular emphasis of EWS is to establish hypotheses and
predictions as well as to generate advices in still not completely understood situa-
tions. Thus the term early has two meanings, a) to start early in time aiming to
avoid/minimize damage, and b) to process uncertain and incomplete information.’
In this paper we consider an instance of an EWS which is particularly targeting the
malware threat and explore its ability to detect unknown malware (variants) based
on incomplete information.

Malware poses a major threat on the Internet today and is defined as software
performing actions intended by an attacker without consent of the computer’s owner
when executed. Forms of malware include worms, viruses, Trojan horses, bots, spy-
and adware. Driven by commercially oriented criminals which systematically com-
promise computers connected to the Internet for illegal purposes, e.g. distribution
of spam messages, the malware threat has grown dramatically.

Collecting novel malware binaries in principal allows one to develop protec-
tive anti-malware measures, such as signatures for anti-virus scanners. Several ap-
proaches exist for automatic collection of novel malware binaries [7,4], which are
typically based on honeypots. However, more than 55.000 novel malware binaries
per day [9] challenges developers of anti-malware-products who thus need to be
supported by automatic malware analysis techniques.

Static analysis techniques (e.g. [5,13,14]) focus on static features of malicious
binaries. Malware authors typically employ obfuscation engines like ADMutate [10]
which pack or encrypt binaries in order to morph malware binaries during distribu-
tion to avoid detection by static signatures. This leads to populations of numerous
polymorphic variants of a malware requiring a static signature for every variant to
detect the whole population. Owing to these facts the effectiveness of automated
static analysis of malicious binaries is limited.

In contrast, dynamic analysis is based on monitoring the behavior of malware
during execution of malicious binaries, e.g. the sequence of performed system calls,
which is more difficult to conceal or obfuscate. Since all polymorphic variants of
a malware population realize the same functionality, they show similar behavior.
Therefore dynamic analysis recently became popular and forms the basis of many
approaches for automatic analysis of malware binaries (e.g. [18,11]).

Given their behavior malware binaries can be clustered into groups of similar be-
havior, which are referred to as malware families. Particularly, polymorphic variants
of a malware that share malware-specific behavior can be grouped by this approach.
Being able to automatically cluster malicious binaries into families of similar be-
havior provides malware analysts with two opportunities. First, every time a new
malware binary is found it can be quickly determined whether it is a variant of an
already known malware family or a new one. Second, and going one step further,
automatic behavioral clustering of malware is a starting point for automatic cre-

104 Martin Apel, Michael Meier

ation of generalizing behavioral signatures which are intended to be included in our
malware early warning system [1]. Behavior that is shared by all malware binaries of
a particular cluster can be used to create a generalizing behavioral signature which
matches all malware binaries of this cluster. Of course, this is only one step and not
sufficient, since it must be ensured that the signatures do not match any behavior
of benign programs.

Besides providing a situation picture our malware early warning system aims
at deriving generalizing behavioral detection signatures for malware. These signa-
tures are generated by combining the following technologies to an integrated process
chain: 1) capturing actively spreading malware using honeypot-based malware col-
lectors, 2) behavioral analysis of malware binaries generating behavior reports for
each malware binary, 3) grouping of behavior reports into groups of similar reports,
and 4) generating signatures for each group of behavior reports.

In the context of early warning a particularly desired property of the generated
signatures is not only to detect the (behavior of) binaries which are known during
signature generation, but also to detect (polymorphic) variants of these known bi-
naries. Ideally a signature generated for a few binaries with similar behavior should
detect all binaries showing similar behavior. I.e. a signature generated based on a
few captured polymorphic variants of a malware should detect all variants of this
malware thus making it a generalizing signature. Based on our experience with
the malware early warning system prototype we study the generalization aspect of
generated behavioral signatures and experimentally investigate the question, which
share of a malware family is required to be known for generating a signature showing
an acceptable detection performance for the whole family?

The paper is structured as follows. Section 2 gives an overview of our malware
early warning system. Our experience with the system, the experiments conducted
and the results of those experiments are described in Section 3. Some final remarks
on the applicability of early warning conclude the paper.

2 Behavioral Malware Signature Generation

In the considered framework of behavioral signature generation a given set of mal-
ware binaries is processed by successively applying the following four automatic
procedures. First, behavioral features are extracted from each malware binary and
put in a representation called behavior report. Second, distances between all behav-
ior reports are measured. Third, the behavior reports are grouped in reports with
small distances using clustering. Fourth, based on features common to all behavior
reports in a group signatures are created. Each of the four procedures is shortly
described in the following.

Automatic Generation of Generalizing Behavioral Signatures for EWS 105

2.1 Extracting and Representing Features

The behavior of a program is defined by the sequence of interactions with (objects
of) the execution environment during program execution, i.e. the sequence of ex-
ecuted system-calls. To allow an automatic analysis of program behavior it needs
to be captured by some monitoring mechanisms which logs executed instructions
in their order of execution. For capturing the behavior of a malware binary, it
is executed in a controlled monitored environment using CWSandbox [18], a tool
specifically developed for dynamic analysis of malware. We discuss the properties
of this behavior monitoring approach in the following. The execution of a Windows

Program
Process Section 1
Thread Section 1

call1
call2

Thread Section 2
call3
call4

Process Section 2
Thread Section 3

call5
call6

Thread Section 4
call7
call8

System-Call Execution Order CWSandbox Analysis Report Behavior Report

Thread 1
call1

call2

Thread 2
call3

call4

Process 1

Process 2

Thread 3
call5

call6

Thread 4
call7

call8

Program

T
im

e
/
E

x
e
c
u
ti
o
n

O
rd

e
r

call1
call2

call3
call4

call5
call6

call7
call8

Fig. 1. Real and represented order of execution

program is performed by at least one process that contains at least one thread.
While a process defines the execution context that is shared by all its threads, a
thread represents the execution of an instruction sequence. During execution a pro-
gram can create additional processes and threads. If not explicitly synchronized all
threads of a program are executed concurrently (see Fig. 1).

Monitoring program execution using CWSandbox results in an analysis report
containing a process section for each process which is created during program ex-
ecution. Each process section contains a section for each thread created by the
respective process during execution. A thread section contains a chronologically or-
dered list of the system-calls executed by the thread. Due to concurrent execution
all the process sections of the analysis report and the thread sections of a process
section are not chronologically but arbitrarily ordered (see Fig. 1). Consequently,
the system-call execution order is captured only thread-local. The only inter-thread
or inter-process relation captured is the parent-child relationship, i.e. which thread
(resp. process) has created another thread (or process).

CWSandbox monitors program behavior at system-call level. There are dif-
ferent Windows32 system-calls that can be used to realize the same functional-

106 Martin Apel, Michael Meier

ity. CWSandbox maps all system-calls realizing a particular functionality onto a
functionality-specific CWSandbox function (CWS function). For example, several
system-calls exist to determine the current system time. All these system-calls are
logged by CWSandbox as get system time. The particular system-call is given as
parameter in the log entry. CWSandbox (version 2.0.71) knows about 130 CWS
functions. Repetitive executions of a system-call with the same parameters are ag-
gregated by CWSandbox and logged as one system-call. The particular number of
calls is given as parameter in the log entry. For any executed system-call, CWSand-
box creates a log entry containing the respective CWS function, the system-call
arguments, the system-call result, the name of the particular system-call, and the
number of aggregated repetitive executions of the system-call.

CWSandbox uses an XML-based format to store CWSandbox analysis reports.
For effective and efficient analysis, the syntactical data representation needs to
be adjusted such that discriminative data feature patterns are accessible by the
analysis methods. Therefore we preprocess and transform CWSandbox analysis re-
ports into so-called behavior reports. This transformation discards any analysis
meta-information contained in the CWSandbox analysis report. It also discards
any arguments to and results of system-calls and the number of aggregated repeti-
tive executions of system-calls. While discarding system-call arguments may render
the approach vulnerable to mimicry attacks (see e.g. [15]). We however see the
system-call itself as most important behavioral feature to focus on. If the proposed
approach performs well on these features we plan to extend it in future work, e.g. by
identifying suitable system-call arguments. Further, the transformation ignores the
parent-child relationship between threads and processes. Considering the chrono-
logically ordered sequences of CWS function calls of thread sections as strings over
the alphabet of CWS functions, the resulting behavior report constitutes a set of
strings characterizing the behavior of threads. Thus any order between the thread
sections is ignored (see Fig. 1).

The discussion in following sections is based on the concept of shared behavior of
several behavior reports, which is defined as follows: A string s is called a common
substring of a set of behavior reports {R1, R2, ..., Rm} with Ri = {ri1, ri2, ...} iff for
each behavior report Ri there exists a thread denoted by ji such that s is a common
substring of the strings r1j1 , r

2
j2
, ... and rmjm . The shared behavior of a set of such

behavior reports is then defined by the set of maximal common substrings of the
behavior reports. For example, given a set of behavior reports S = {R1, R2, R3}
with R1 = {abcd, xyz}, R2 = {bcda, yz} and R3 = {zx, bca}, the shared behavior of
S is the set of strings {a, bc, z}.

2.2 Measuring Similarities between Behavior Reports

To determine whether two behavior reports are similar a distance between them
is calculated. For this several distance measures can be used. We studied different

Automatic Generation of Generalizing Behavioral Signatures for EWS 107

distance measures in detail and discussed desirable properties of a distance measure
for this particular purpose in [2]. The considered distance measures include the edit
distance (also known as Levenshtein distance), an approximated edit distance, the
normalized compression distance, and the Manhattan distance. They were evalu-
ated with respect to the criteria appropriateness, order sensitiveness, and run-time
performance. Appropriateness of a distance measure reflects the fact that behav-
ior reports which share a large amount of behavior have a small distance and that
behavior reports, which share a tiny (or no) amount of behavior, have a large dis-
tance. For comparative evaluation of their appropriateness, the distance measures
were rated according to the amount of shared behavior of groups (or clusters) which
can be found after clustering behavior reports using a particular distance measure.
Regarding order sensitiveness, a distance measure is considered appropriate if it
is sensitive to changes at a local level (e.g. the sequence of system-call executions
needed to perform a specific task), but insensitive to changes at a global level (e.g.
the sequence in which different tasks are accomplished). Based on the results of
this study, we identified the Manhattan distance as the most appropriate distance
measure for grouping malware behavior reports with similar behavior. To apply the
Manhattan distance the behavior reports have to be embedded into a vector space
first. This is done using a formal language L. Each dimension of a vector corresponds
to a specific word of L and refers to the number of occurrences of the word in the
behavior report. The vector dimension depends on the number of words in L, which
is usually very high. On the other hand the vectors are very sparse. Data structures
tailored for such vectors, e.g. arrays, tries and suffix trees, are described in [16]. We
use n-grams of system-calls as the formal language to embed behavior reports into
a vector space. According to our analysis results in [2], n has been chosen to be 3.

2.3 Clustering Behavior Reports and Generating Behavioral
Signatures

A number of proposals to cluster malware behavior have already been made in the
literature (e.g. [12,17]). Given a distance measure for behavior reports, clustering
approaches can be used to group close (short distant) behavior reports into so-
called behavior clusters. Unfortunately, there is no fixed/distinct distance known
up to which behavior reports should belong to the same cluster. Therefore we need
an additional criterion for deciding whether a cluster should be formed or not. Since
it is the goal to form signatures for every cluster, we use the existence of a good
signature as criterion to decide whether a cluster is formed or not. A signature is
considered good if it does not match the behavior of a set of benign programs (the
so-called Goodpool).

Because of the incremental nature of the problem (binaries and thus behavior
reports arrive continuously) an incremental clustering approach is needed.

108 Martin Apel, Michael Meier

1. The algorithm tries to insert the new behavior report into existing clusters with-
out changing their signatures first.

2. If that does not work the algorithm tries to insert the behavior report into
the ”best fitting” (minimal distant) cluster (the distance measure is used as a
heuristic here) so that the modified signature for that cluster is still valid (does
not match behavior reports of the Goodpool).

3. If step 2 fails too, a new cluster for the behavior report is created.

binary m
collected

determine behavior b
of binary m

m � KnownBinaries? m already processed

�s � Signatures:
match(b, s)

�c � Clusters:
for c�{b} a signature can

be created

add cluster c‘ = {b}
to Clusters :

create first-time
signature for c‘

insert b in c with minimal
distance to b :

create signature
for c again

signature created,
that detects b

no

no

KnownBinaries

Behaviors
Clusters

Signatures
GoodPool

yes

yes

yes no

insert b in cluster c
for which signature s

has been created

Fig. 2. Incremental clustering and signature generation for behavior reports

A sketch of the overall procedure can be found in Fig. 2. The algorithm ensures
that clusters are containing as much reports as possible without creating an invalid
signature for the clusters. The generated set of clusters and signatures will cover
the given malware behavior reports, but it does not match any behavior report in
the Goodpool.

3 Experience and Experiments

We have implemented the procedures described above in our malware early warning
system prototype which runs since September 2009. It uses the server honeypot
Amun [7] as malware collectors and starting from June 2010 drive-by-downloaded
binaries collected by the Web Honeyclient MonkeyWrench [4] are also forwarded to

Automatic Generation of Generalizing Behavioral Signatures for EWS 109

our system. Up to now (April 2012) about 106.910.920 attacks have been registered.
Overall 35.460 unique malicious binaries have been submitted to our system. About
15.000 of these binaries could be analyzed successfully using CWSandbox. The
transformation of the respective CWSandbox analysis reports into behavior reports
resulted in 12.839 unique behavior reports. These behavior reports are spread over
171 clusters. The Goodpool currently used by our system contains behavior reports
of 1.500 benign programs - most of them are installation programs of freely available
software packages.

Based on the experience and the achieved results we are studying the gener-
alization aspect of generated behavioral signatures. The question is investigated,
which share of a malware family is required to be known for generating a signature
showing an acceptable detection performance on the whole family? To prevent a
single behavior report dominating the signature generation and thus the generaliza-
tion process for the whole cluster, only clusters that contain at least ten behavior
reports are used in the experiment. This leaves us with 50 clusters of different sizes.
The number of clusters of the different sizes is shown below in Fig. 3. Note that

2

11

6 6

9 9

2
1

2 2

0

2

4

6

8

10

12

8-
15

16-
31

32-
63

64-
127

128-
255

256-
511

512-
1023

1024-
2047

2048-
4095

4096-
8191

nu
m

be
r o

f c
lu

st
er

s

cluster size (number of reports)

Fig. 3. Number of clusters of different sizes

the interval size doubles with every step, but the number of clusters stays roughly
the same, i.e. the number of small clusters is large compared to the number of large
clusters. For signature generation in an early warning context, two related questions
are of particular importance: 1. How fast does the true positive rate increase with
respect to the number of known behavior reports used for generating the signature?
2. How many behavior reports need to be seen and processed before a reasonable
signature can be created?

To answer the first question for a certain cluster we measured the true positive
rate for signatures which are created using randomly drawn behavior reports from
this cluster. This was repeated five times for each number of behavior reports. The
arithmetic mean of the measured true positive rates was used to generate a graph for
each cluster showing the averaged true positive rate relative to the number of reports

110 Martin Apel, Michael Meier

used for signature generation. The resulting graphs for a medium size cluster of 303
behavior reports are shown in Fig. 4. For answering the second question we evaluated

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

tru
e

po
si

tiv
e

ra
te

number of reports

0,95

0,96

0,97

0,98

0,99

1

21 41 61 81 101 121 141 161 181 201 221 241 261 281 301

tru
e

po
si

tiv
e

ra
te

number of reports

Fig. 4. : True positive rate per number of behavior reports used for signature generations (medium size
cluster)

the number of behavior reports required for generating a signature achieving a true
positive rate of at least 80%. The results are shown in Table 1 and Fig. 5. They
point out that for 90% of the clusters 13 behavior reports from each cluster are
enough to generate a signature detecting at least 80% of the reports within the
clusters. Fig. 5 suggest that there is no direct obvious connection between cluster

Num. of behavior reports re-
quired for generating a signa-
ture with true positive rate ≥
80%

Num. of
clusters

Sizes of corresponding clusters

3 1 16
5 2 17, 28
6 6 13, 15, 379, 409, 922, 6513
7 5 23, 25, 70, 338, 375
8 7 19, 21, 49, 123, 186, 446, 5827
9 5 24, 56, 62, 303, 2446
10 5 32, 44, 143, 168, 880
11 5 42, 103, 139, 207, 1895
12 3 26, 74, 136
13 6 24, 74, 166, 213, 435, 2802
15 2 122, 430
16 1 201
25 1 472
30 1 30

Table 1. Number of behavior reports required for generating signatures with a detection rate of at least
80%

size and the number of reports that are needed to achieve 80% detection rate. This
is quite surprising. Whether this effect is only present in our dataset or is a general

Automatic Generation of Generalizing Behavioral Signatures for EWS 111

0

5

10

15

20

25

30

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500

nu
m

be
r o

f r
ep

or
ts

 re
qu

ire
d

fo
r g

en
er

at
in

g
a

si
gn

at
ur

e
w

ith
 >

=
80

%
 tr

ue
 p

os
iti

ve
 ra

te

cluster size (number of reports)

Fig. 5. Number of behavior reports required for generating signatures with a detection rate of at least
80% versus cluster size

phenomenon needs to be investigated further. The described experiments show that
generalization effects happen quite fast, i.e. only a few behavior reports are required
to generate useful generalizing signatures.

4 Final Remarks

Our system is an example of an early warning system which aims at deriving gener-
alizing detection signatures for malware. Based on incomplete information (only a
few behavior reports) about a malware behavior cluster (family), the system auto-
matically generates behavioral signatures that have a reasonable detection rate with
respect to the overall cluster. In this paper we studied the generalization aspect of
generated behavioral signatures and experimentally investigated the question, which
share of a malware family is required to be known for generating a signature showing
an acceptable detection performance for the whole family?

Experimental results show that for 90% of the considered clusters less than 14
behavior reports from a cluster are required to generate a signature that detects at
least 80% of the behavior reports in these clusters. Our results also show that the
detection rate of a generated signature is increasing very rapidly with the amount
of behavior reports used for its generation. This makes them particularly usable for
the early warning context, where fast responses (signatures) are required based on
incomplete information.

The behavioral signature generation approach also seems to be suitable for
thwarting the threat posed by polymorphic transformations incorporated in mal-
ware, because signatures which can detect a large percentage of a population of
polymorphic malware variants can already be generated after only a few of them

112 Martin Apel, Michael Meier

are known. To sum up, the described results of this tentative experimental study
about the generalization of behavioral signatures encourage further detailed inves-
tigations of the behavioral signature generation approach in future work.

References

1. M. Apel, J. Biskup, U. Flegel, and M. Meier. Towards Early Warning Systems – Challenges, Tech-
nologies and Architecture. In Proc. of CRITIS 2009, volume 6027 of LNCS, pages 151–164. Springer,
2009.

2. M. Apel, C. Bockermann, and M. Meier. Measuring similarity of malware behavior. In Proc. of 34th
LCN 2009. IEEE Computer Society, 2009.

3. J. Biskup, B. M. Hämmerli, M. Meier, S. Schmerl, J. Tölle, and M. Vogel. 08102 working group –
early warning systems. In Perspectives Workshop: Network Attack Detection and Defense, volume
08102 of Dagstuhl Seminar Proceedings, 2008.

4. A. Buescher, M. Meier, and R. Benzmueller. Throwing a monkeywrench into web attackers plans. In
Proc. of the 11th Joint IFIP TC6 and TC11 Conference on Communications and Multimedia Security
(CMS 2010), volume 6109 of LNCS, pages 28–39. Springer, 2010.

5. M. Christodorescu and S. Jha. Static analysis of executables to detect malicious patterns. In Proc.
of the 12th USENIX Security Symposium.

6. U. Gattiker. The Information Security Dictionary. Kluwer, 2004.
7. J. Göbel. Amun: Automatic Capturing of Malicious Software. In Proc. of Sicherheit 2010, volume

170 of LNI, pages 177–190. GI e.V., 2010.
8. B. Grobauer, J. Mehlau, and J. Sander. Carmentis: A co-operative approach towards situation aware-

ness and early warning for the internet. In Proc. of IMF’06, volume 97 of LNI, pages 55–66. GI,
2006.

9. AV-Test Institute. AV-Test - Malware Statistics. http://www.av-test.org/en/statistics/

malware/, Last accessed 30 April 2012.
10. K2. Admmutate 0.8.4. http://www.ktwo.ca/security.html, Last accessed 30 April 2012.
11. A. Lanzi, M. Sharif, , and W. Lee. A system for extracting kernel malware behavior. In Proc. of

NDSS’09, 2009.
12. T. Lee and J. J. Mody. Behavioral classification. In Proc. of Annual Conference of the European

Institute for Computer Antivirus Research (EICAR), 2006.
13. C. Linn and S. Debray. Obfuscation of Executable Code to Improve Resistance to Static Disassembly.

In Proc. of Conference on Computer and Communications Security (CCS03), pages 290–299. ACM,
2003.

14. A. Moser, C. Kruegel, and E. Kirda. Limits of static analysis for malware detection. In Proc. of the sss
Annual Computer Security Applications Conference (ACSAC 2007), pages 421–430. IEEE Computer
Society, 2007.

15. C. Parampalli, R. Sekar, and R. Johnson. A practical mimicry attack against powerful system-call
monitors. In Proc. of the 2008 ACM symposium on Information, computer and communications
security, ASIACCS ’08, pages 156–167, New York, NY, USA, 2008. ACM.

16. K. Rieck and P. Laskov. Linear-Time Computation of Similarity Measures for Sequential Data.
Journal of Machine Learning Research (JMLR), 9:23–48, 2008.

17. P. Trinius, C. Willems, T. Holz, and K. Rieck. Automatic Analysis of Malware Behavior using Machine
Learning. Journal of Computer Security (JCS), 19(4):639–668, 2011.

18. C. Willems, T. Holz, and F. Freiling. Toward automated dynamic malware analysis using CWSandbox.
IEEE Security & Privacy, 5(2):32–39, 2007.

A Concept for Secure and Privacy-Preserving

Collaborative Information Sharing

Hans Hofinger and Sascha Todt

Fraunhofer AISEC,
Parkring 4, 85748 Garching (near Munich), Germany

hans.hofinger@aisec.fraunhofer.de,sascha.todt@gmx.de

http://www.aisec.fraunhofer.de

Abstract. The enormous number of different threats makes it very hard for network oper-
ators to detect, analyze and counter attacks on systems within their administrative domain.
By using an IT Early Warning System to collaborate they may improve attack detection and
analysis results and reduce the time and costs spent for incident handling. To enable collab-
oration, participants of an information sharing network need to exchange security relevant
data which raises several considerations regarding privacy and reputation. To eliminate these
issues and encourage collaboration we present a concept for secure and privacy-preserving
information sharing across borders of administrative domains and show how existing tech-
niques can be used to fulfill the manifold requirements of IT Early Warning.

1 Introduction

The ultimate goal of IT Early Warning (IT-EW) is to identify attacks and threats
to communication networks at a very early stage and to provide information about
these incidents. This enables organizations to take countermeasures and minimize
or even avert the negative impacts of such attacks. The type of information needed,
however, highly depends on the type of attack that shall be detected. While the de-
tection of some attacks requires the analysis of data from merely one administrative
domain it might also be necessary to collect data from more than one organization
to provide the necessary base to identify (large-scale) attacks or their indications.

Hence from a technical perspective it is advantageous for different network op-
erators to collaborate and share security incident related information between each
other to better be able to react and mitigate attacks on or emerging from their
infrastructures.

In the scenario where information is required from multiple administrative do-
mains it might be necessary that an entity shares information that contains sensitive
data. This, however, raises data privacy issues since sharing such information with
other organizations, especially if those are competitors, may have negative impact
on the organization’s future business and success or might be prohibited by law.
Hence there will be reluctance to provide this information to a collaborative IT
Early Warning System (IT-EWS). Thus, it is essential to build privacy-preserving

114 Hans Hofinger, Sascha Todt

techniques into such systems. These techniques shall not only guarantee data pri-
vacy but also originator anonymity to assure that no conclusions can be drawn
about sensitive data or the initial transmitter of a piece of information.

Many IT-EWSs rely on a trusted central instance for analysis and correlation of
the data that is collected at various administrative domains [6,11] . This, however,
does not solve all of the data privacy issues, since some types of data still have to
be sanitized or pseudonymized (as done in, e.g., [13]) due to law or protection of
assets before sent to a foreign organization. Additionally some potential users of an
IT-EWS may be reluctant to trust a third party at all for various reasons. In that
case there is a need for a decentralized system approach and sophisticated detection
and analysis techniques, that can be built on top of this system.

Such a decentralized approach is investigated as one of the main parts of the AS-
MONIA1 project which is sponsored by the German Federal Ministry of Education
and Research2 (BMBF). The main goal of this project is to improve the security
for next generation mobile communication networks, such as 4G/LTE.

Similar to other techniques like firewalls or intrusion detection and prevention
systems that aim to mitigate attacks an adversary might try to circumvent or even
attack an IT-EWS itself to obfuscate her activities. Thus, further security consid-
erations have to be taken into account in addition to privacy and anonymity issues
that have to be addressed. These considerations range from vulnerability to (dis-
tributed) denial of service attacks to injection of falsified data to fool participants
of an IT-EWS.

Thus, our approach, named Collaborative Resilient Early Warning (CREW),
provides a distributed, decentralized, resilient, anonymity and privacy-preserving
information sharing platform which aims for improving the

– accuracy and timeliness of warnings
– detection and analysis of attacks and anomalies
– resilience to attacks against an IT-EWS itself.

2 Challenges in Collaborative Information
Sharing

Collaboration between different organizations comes along with a number of issues
regarding privacy, loss of reputation and competitive disadvantages, especially if
participants are competitors. Thus, this chapter outlines security and privacy con-
siderations for participants of an IT-EWS and discusses requirements for a system
that enables collaboration between them.

An IT-EWS has to ensure, e.g., that the originator of a report containing mean-
ingful warning information for other participants must not be afraid that its real

1 http://www.asmonia.de
2 http://www.bmbf.bund.de

Collaborative Information Sharing 115

identity can be inferred from, e.g., the source IP address of the warning or the re-
port data itself. Nevertheless it must be possible to trace the sources of purposely
distributed wrong information which may lead to negative impacts at the recip-
ients’ networks. Obviously this leads to a conflict of requirements. Our approach
minimizes this conflict and provides a solution that fulfills the requirements as good
as possible.

The following list summarizes the requirements we have identified for a reliable
and privacy-preserving collaborative information sharing system protecting the par-
ticipants’ reputation:

Anonymity to prevent loss of reputation for participants sharing sensitive infor-
mation

Privacy to prevent competitive disadvantages for participants sharing sensitive
information

Authentication to form a closed user group of legitimate participants and avoid
injection of falsified information by an attacker

Integrity to guarantee that information sent via the IT-EWS cannot be modified
unnoticed between sender and receiver

Confidentiality to guarantee the privacy of information exchanged via the IT-
EWS

Non-repudiation to enable traceability of falsified messages injected into the IT-
EWS by a legitimate participant

Resilience to guarantee availability of the IT-EWS even under attack scenarios
Interoperability to guarantee compatibility to the existing infrastructure within

the operator network (ON) and to enable collaboration with other Early Warning
Systems and (external) sensors

Fairness to guarantee equal balance of input to and information received from the
IT-EWS to maximize the return of investment for participating organizations

The relevance of each requirement may vary depending on the different types
of collaborators participating in an IT-EWS and the level of trust they share be-
tween each other. Our CREW concept, however, provides a framework to fulfill all
requirements even for IT-EWSs with a weak level of trust.

3 A Concept for Privacy-Preserving and
Anonymous Information Sharing

In a common setting a network operator runs sensors within its local network,
e.g., on network elements or user end devices, to detect attacks and anomalous
behavior. These sensors transfer their collected – and sometimes already aggregated
– data to a local central database inside the ON where it is analyzed and evaluated.
Results of the analysis are stored locally and can be used to take countermeasures

116 Hans Hofinger, Sascha Todt

against attacks to mitigate or even avert their negative impacts on the operator’s
infrastructure.

In some cases, however, the local data and results may not be sufficient to
detect or counter an attack. Hence enriching the local network view by data from
other administrative domains is advantageous. Therefore the collaborative IT-EWS
enables network operators to share locally collected data with other participants,
thereby providing information to them and consuming data provided by others.

We especially focus on the usage of existing components to address arising is-
sues of collaboration and present how they can be combined to build an Information
Sharing Network (ISN) for distribution of warnings and collaborative attack detec-
tion and analysis.

3.1 Components for Implementation

Although some of the requirements discussed in chapter 2 seem to be conflicting
(e.g., anonymity and non-repudiation) we have identified specific components to
fulfill all requirements especially for IT-EWSs with a weak level of trust between
participants:

– Traceable Anonymous Certificates
– Anonymous P2P Overlay Networks
– Secure Multiparty Computation
– Common data exchange formats

These components are discussed in more detail in the following sections and
Table 1 depicts the context between requirements and components.

Traceable Anonymous Certificates (TACs) [8] provide X.509 certificates con-
taining pseudonyms instead of real identities in the subject line. A strict split of the
Registration Authority (RA) and Certificate Authority (CA), a threshold signature
scheme, and blinded signatures ensure that one authority alone is not able to link a
TAC to a concrete user. However, in case of abuse of a TAC an aggrieved party can
consecutively collaborate with the CA and RA to reveal the real identity of a TAC
user. In CREW TACs can be used to provide authenticity, integrity, confidentiality,
non-repudiation and anonymity.

Anonymous P2P Overlay Networks GNUnet3 is a framework for secure P2P
networking. Together with gap [15] it provides an anonymous overlay network al-
lowing to distribute content in a P2P network without revealing the originator of
this content. The usage of GNUnet and gap in the context of CREW is described
in section 4.1.
3 https://gnunet.org/

Collaborative Information Sharing 117

Secure Multiparty Computation The overall goal of Secure Multiparty Com-
putation (MPC) is to enable joint computations on private input data from multiple
participating parties without revealing the actual individual input data. The result
of the computation, however, can be provided to all participants. Thus, MPC allows
contributing private input data without the risk of losing reputation due to leakage
of sensitive information included in the input data. This is especially interesting in
the domain of collaborative incident handling and attack detection across multiple
administrative domains. Since its initial presentation by Yao [16] in 1982 a variety
of different protocols for a number of different application fields ranging from sugar
beet auctions [9] to secure supply chain management [2] has been developed for
MPC. The two most popular types of MPC are Secret Sharing and Homomorphic
Encryption.

While homomorphic encryption uses encryption algorithms to obfuscate the in-
put values of the participants, secret sharing is based on splitting up a participant’s
private input data into shares and distributing them to the other parties. In 2010
Burkhart et al. [7] presented an MPC library based on Shamir’s Secret Sharing
called SEPIA4 (SEcurity through Private Information Aggregation) enabling the
aggregation of network and security data between multiple administrative domains.
This Java library supports a number of different protocols to process different types
of input data depending on the desired type of result including Event Correlation,
Network Traffic Statistics, and Top-k Queries.

By relaxing the constant round requirement Burkhart et al. were able to optimize
performance of the protocols thereby making feasible near real-time analysis of
network and security data.

Thus, MPC implementations such as SEPIA provide the flexibility and privacy-
preserving techniques required for CREW and are therefore potential building
blocks for collaborative anomaly and attack detection and analysis as outlined in
section 4.2.

Data Format A data format, appropriate for sharing IT-security relevant infor-
mation is another important building block of CREW. The sharing of warnings
(see section 4.1) should enable participants who have detected malicious or at least
suspicious behavior in their own networks to inform the other members of the ISN
about the observed phenomenon. If possible the format should be capable to trans-
port information – if applicable and available – about the exploited vulnerability,
the attack steps, the issuer’s estimation about the impact of the incident as well
as potential countermeasures. A suitable data format ideally allows integration or
collaboration with existing frameworks that handle IT-security relevant informa-
tion.

4 http://sepia.ee.ethz.ch/

118 Hans Hofinger, Sascha Todt

A plethora of different data exchange formats for the delivery of warnings or
the transmission of raw data has already been defined, each of which focusing on a
particular setting or use case and thus differing from each other. Relevant examples
are the Incident Object Description Exchange Format (IODEF)[10], the Intrusion
Detection Message Exchange Format (IDMEF) [3], Real-time Inter-network Defense
(RID) [12], the European Information Security Promotion Programme advisory for-
mat (EISPP) [14], the German Advisory Format (DAF) [1], and the Cybersecurity
Information Exchange Techniques (CYBEX) initiative 5 [5].

When selecting candidates for use in CREW aliveness of the data format as well
as the opportunity to exchange impact information should be taken into account.
Furthermore the provisioning of advisories, recommendations and information about
vulnerabilities should be possible. The sending of raw data such as Malware samples
and the submission of information about attack steps are further requirements. Last
but not least the interoperability with existing solutions should be considered. Of
the above mentioned formats, IODEF and CYBEX seem to fit best.

3.2 Summary of Requirements and Components

Table 1 summarizes which requirement of chapter 2 is fulfilled by the above de-
scribed components. Section 4 describes how these components are used to imple-
ment the two most relevant applications for an IT-EWS.

Table 1. Requirements for collaboration and components to fulfill them.

TAC P2P MPC Data Format

Anonymity x x

Privacy x

Non-repudiation x

Interoperability x

Resilience x

Authentication x

Integrity x

Confidentiality x

Fairness x x

4 Applications for Collaborative Information
Sharing

Brunner et al. [4] discuss the usage of TACs and P2P Overlay Networks to achieve
anonymous and privacy-preserving information sharing for IT-EWSs. They focus on

5 http://www.itu.int/en/ITU-T/studygroups/com17/Pages/cybex.aspx

Collaborative Information Sharing 119

a high-level concept for information sharing, i.e., on the combination and properties
of the two mentioned components. [4] also mentions the usage of MPC for IT-EW
as a future research activity.

CREW integrates the combination of the three proposed components TACs,
GNUnet and MPC extended by a common data exchange format and develops
protocols for the two most important aspects in an ISN such as CREW

– Sharing of warnings between participants
– Collaborative detection and analysis of attacks and anomalies

These two applications are described in more detail in the following sections.

4.1 Sharing of Warnings

When network operators detect attacks on their networks they are supposed to
react to these incidents to minimize the negative effects on their infrastructure and
to mitigate loss of money or reputation due to downtime of services, leakage of
sensitive customer data etc.

If more than one network operator might be affected by a specific type of attack
it may be advantageous for the operators to share information on the attack using
CREW. The sharing of information can be done by distributing attack information
in the terms of warnings by broadcasting them to the IT-EWS.

This leads to a considerable advantage for the participants not yet affected by
an attack or not able to detect it and develop countermeasures on their own. If the
warning is not relevant for a participant the received information may be stored for
future use or just be discarded. Prerequisite for an effective and efficient sharing
of warnings is a common data format such as IDMEF, IODEF or the like. This
facilitates automated analysis and processing of the warnings and thus minimizes the
time needed to act based on the received attack information and mitigate an attack
by implementing appropriate countermeasures. For the distribution of warnings via
the IT-EWS we recall the requirements and the components to fulfill them as shown
in Table 1.

As base for CREW we create a closed user group using a full-meshed Virtual
Private Network (VPN) between the participants based on X.509 certificates for
authentication. The VPN in turn assures the integrity and confidentiality of the
exchanged information while traveling through the IT-EWS. Building up a VPN
based on authentication via certificates and signing the warnings using a certificate’s
private key also assures that no illegitimate entities such as attackers are able to
join the IT-EWS and inject falsified warnings into the IT-EWS or intercept and
manipulate legitimate warnings.

However, participants may not want to be identified as the originator of a war-
ning since they fear loss of reputation when revealing that their network is at-
tacked. Thus, for signing warnings, we need certificates providing authenticity, non-

120 Hans Hofinger, Sascha Todt

repudiation and seemingly conflicting anonymity at the same time. This conflict,
however, can be solved by revealing a participant’s real identify in case of abuse.
TACs as discussed in section 3.1 fulfill these requirements and allow to trace the
real identity of a participant, e.g., when purposely injecting false information into
an IT-EWS.

The TACs are issued by a CA trusted by all participants of an IT-EWS and
can therefore be used for authentication like regular X.509 certificates. Although
TACs provide anonymity for the certificate owner the real identity of a TAC owner
may be inferred over time due to the type and content of warnings distributed to
the IT-EWS. Hence all participants of the IT-EWS shall be equipped with multiple
TACs or the TACs of all participants shall be replaced with new ones on a regular
basis or after specific events such as a new participant joining the IT-EWS.

Although replacing the participants’ TACs helps to mitigate the risk of inference
attacks the real identity of the originator of a warning may be revealed due to its
source IP address. Thus, CREW should implement another layer of anonymization
such as Onion Routing or anonymous P2P Overlay Networks. GNUnet and its gap
provide such an anonymous P2P network by indirection of requests and responses
over multiple nodes in the network. Hence receiving a request or response from a
specific node in the network does not mean that this node is the originator of the
message in question.

Another source of information to reveal a participant’s real identity is the content
of the warning itself which has to be sanitized carefully before sent to the IT-EWS.
Since the content and therefore potential sensitive data depend on the type of
attack, sanitizing a warning is a nontrivial task which is hard to automate and
should therefore be done manually by an expert. A warning, however, should at
least contain the following data (if available):

– Type of attack

– Target of attack (rather descriptive, e.g., OS, software version etc.)

– Impact

– Solution/countermeasures

– Related known vulnerabilities (e.g. CVE numbers etc.)

– Further sources of information

This information should be well structured and put into a common data format
agreed on by all participants of the IT-EWS. Suitable candidates for this data
format are discussed in section 3.1.

Participants can either request warnings from CREW by querying the network
in regular intervals or warnings are broadcasted to the IT-EWS as soon as they are
available at one operator. Figure 1(a) depicts the latter process.

Collaborative Information Sharing 121

LAN

LAN

LAN

LAN

LAN

I n t e r n e t

P2P

LAN

Local Incident
Database

LAN

LAN

LAN

TAC

LAN

Warning

VPN

LAN

LAN

LAN

LAN

LAN

I n t e r n e t

MPC
01000...

10100...

11001...

10011...
00110...

LAN

Local Incident
Database

LAN

LAN

LAN

TAC

LAN

VPN

(a) (b)

Fig. 1. (a) An anonymous P2P Network on top of a full-meshed VPN to distribute warnings within
a closed user group. (b) The users exchange their MPC shares and intermediary results over secured
communication channels.

4.2 Collaborative Detection and Analysis

Aggregating (sensor) data and attack information from multiple administrative do-
mains using MPC techniques provides a bigger data set than from one single source.

The information required for collaborative detection and analysis differs from
that used for sharing of warnings. While warning contents are already filtered either
manually or automatically, information for MPC based processing should be in
raw sensor data format. Hence the common data format for information sharing
mentioned in section 4.1 is not suitable for the task discussed here.

Although MPC enables privacy-preserving data aggregation and sharing it does
not make obsolete selection of the information to be shared. For practical collab-
orative detection and analysis the participants providing their private input data
need to agree on the type of data to be analyzed and which parameters need to be
shared. Reducing the parameters to be contributed to the collaborative detection
and analysis, however, has rather performance implications than minimizing privacy
issues.

Agreeing on the required parameters may be done using the warning application
discussed in section 4.1. Instead of broadcasting a concrete warning via CREW this
mechanism could also be used to request and initiate a new collaborative detection
and analysis process including the configuration required for the appropriate MPC
joint computation.

Potential types of data for collaborative detection and analysis may include but
are not limited to:

– Malicious/suspicious IP addresses (IPv4 and IPv6)
– Scanned ports
– Netflows

122 Hans Hofinger, Sascha Todt

– (Hashes of) Malware binaries
– Malicious/suspicious URLs (e.g. for dropzones)
– Properties of attacked devices
– Attack timestamps

Although secret sharing based protocols provide privacy and fairness to CREW
participants, MPC normally does not fulfill other requirements as listed in chapter 2.
Thus, SEPIA provides an integrated P2P network based on SSL connections thereby
fulfilling the requirements resilience, authentication, integrity and confidentiality.
The required certificates to enable SSL connections need to be created beforehand
and added to the configuration of the SEPIA peers. Figure 1(b) depicts the exchange
of data shares for MPC joint computations between participants of a CREW-based
IT-EWS.

5 Conclusion

In this paper we describe a concept for secure and privacy-preserving information
sharing between administrative domains. Our CREW concept fulfills all important
requirements of an IT-EWS regarding loss of reputation and privacy considera-
tions and helps to encourage information exchange even between competitors. Our
approach uses existing components like Traceable Anonymous Certificates, Anony-
mous P2P Overlay Networks, Secure Multiparty Computation, and a common data
exchange format. We also depict how these components can be combined to build
the two most important applications for collaborative information exchange, namely
sharing of warnings and collaborative detection and analysis thereby protecting the
participants’ interests security, data privacy, and originator anonymity.

References

1. D. C. Verbund. German Advisory Format (DAF). http://www.cert-
verbund.de/daf/daf description.html.

2. F. Kerschbaum, A. Schroepfer, A. Zilli, R. Pibernik, O. Catrina, S. de Hoogh, B. Schoenmakers,
S. Cimato, and E. Damiani. Secure collaborative supply-chain management. Computer, 44(9):38 –43,
sept. 2011.

3. K. Moriarty. Real-time Inter-network Defense (RID), Nov. 2010.

4. M. Brunner, H. Hofinger, C. Roblee, P. Schoo, and S. Todt. Anonymity and privacy in distributed
early warning systems. In CRITIS 2010: Proceedings of the 5th International Conference on Critical
Information Infrastructures Security, pages 82–93. LNCS, 2010.

5. A. Rutkowski, Y. Kadobayashi, I. Furey, D. Rajnovic, R. Martin, T. Takahashi, C. Schultz, G. Reid,
G. Schudel, M. Hird, and S. Adegbite. CYBEX: the cybersecurity information exchange framework
(x.1500). Computer Communication Review, 40(5):59–64, 2010.

6. M. Apel, J. Biskup, U. Flegel, and M. Meier. Early Warning System on a National Level - (Project
AMSEL). In Proceedings of the International Workshop on Internet Early Warning and Network
Intelligence (EWNI), 2010.

Collaborative Information Sharing 123

7. M. Burkhart, M. Strasser, D. Many, and X. Dimitropoulos. SEPIA: Privacy-Preserving Aggregation
of Multi-Domain Network Events and Statistics. In USENIX Security Symposium, pages 223–240,
2010.

8. S. Park, H. Park, Y. Won, J. Lee, and S. Kent. Traceable Anonymous Certificate. RFC 5636 (Exper-
imental), Aug. 2009.

9. P. Bogetoft, D. Christensen, I. Damg̊ard, M. Geisler, T. Jakobsen, M. Krøigaard, J. Nielsen, J. Nielsen,
K. Nielsen, J. Pagter, M. Schwartzbach, and T. Toft. Secure multiparty computation goes live. In
Financial Cryptography, pages 325–343, 2009.

10. R. Danyliw, J. Meijer, and Y. Demchenko. The Incident Object Description Exchange Format
(IODEF). RFC 5070 (Proposed Standard), Dec. 2007.

11. S. Pinkerton. A Federated Model For Cyber Security. In Cyberspace Research Workshop, Shreveport,
LA, November 2007.

12. H. Debar, D. Curry, and B. Feinstein. The Intrusion Detection Message Exchange Format (IDMEF).
RFC 4765 (Experimental), Mar. 2007.

13. K. Kossakowski, J. Sander, B. Grobauer, and J. I. Mehlau. A German Early Warning Information
System - Challenges and Approaches. Presentation at 18th Annual FIRST Conference, June 2006.

14. EISPP-Consortium. EISPP Common Advisory Format Description, Identifier: EISPP-D3-001-TR,
v2.0. Technical report, 2004.

15. K. Bennett and C. Grothoff. gap - Practical Anonymous Networking. In Privacy enhancing technolo-
gies. International workshop No3, Dresden, volume 2760 of Lecture notes in computer science, pages
141–160, 2003.

16. A. Yao. Protocols for secure computations. Foundations of Computer Science, Annual IEEE Sympo-
sium on, 0:160–164, 1982.

IO: Deploying An Interconnected Asset Ontology

To Enhance Information Retrieval Regarding

Security Processes

Henk Birkholz

Universität Bremen TZI, Germany
birkholz@tzi.de

http://www.tzi.de

Abstract. Security-related processes require well structured asset information. The IO
framework provides interconnected asset information in a manner that enables its flexible
utilization. This paper presents advances in the development of IO: A terminology is pro-
posed that adapts definitions found in the context of organizational memory information
systems. A generic concept of ”Group” enables categorizing assets, enhancing information
retrieval. New use cases demonstrate the interaction of IO with producers and consumers
of information in the context of information retrieval.

1 Introduction

In a production environment security-related decision processes depend on detailed
asset information [15,24,16]. The interconnected-asset ontology (IO) framework sat-
isfies this demand and provides a structured representation of detailed asset infor-
mation [11]. However, introducing a framework, such as IO, in an organization is no
simple endeavor. Without an urgent demand or a direct incentive [6], deployment
of an IT solution usually is a proactive task. In general, direct benefits make the
corresponding investment of time and resources more attractive to stakeholders.
Hence, we present in this paper characteristics and applications of IO that provide
direct incentives to encourage its proactive deployment in an organization: A group
concept taxonomy enhances and simplifies information retrieval to support hetero-
geneous security processes. In addition, the applications presented in this paper can
provide further incentives promoting proactive deployment of the IO framework: the
automatic generation of Nagios configuration [8] and the support of a deployment
process introducing network domain security (NDS) design principles into existing
mobile communication IT-infrastructure specifified by the 3rd Generation Partner-
ship Project (3GPP) [2]. An additional contribution of this paper is to introduce
a terminology adapted from organizational memory information systems (OMIS).
We show, that in a top level view, the primary functions of the IO framework are
very similar to mnemonic functions found in OMIS.

The remainder of this paper is structured as follows: In section 2 we discuss
research on organizational behavior, proactivity and motivation as relevant factors

IO: Deploying An Interconnected Asset Ontology 125

promoting a successful deployment of the IO framework. Related work on asset cat-
egorization is presented to emphasize the usefulness of a group concept regarding
the information retrieval process. The related work section also covers organiza-
tional memory information systems (OMIS): Similarities between basic functions
implemented in the IO framework and mnemonic functions found in OMIS are high-
lighted. Section 3 describes the design of IO with regard to the function terminology
adopted from OMIS. Characteristics of information producers and information con-
sumers in the context of asset information are also included in section 3. In section
4 the group concept is introduced and examples of its application are presented.
In section 5 the use cases and their corresponding scenarios are described. The
soundness of the approach is illustrated via pseudo code for each use case.

2 Related Work

Asset Categorization Ault et. al. highlight asset management as an important pre-
requisite for short and long term decision processes [7]. On top of that, the as-
sociation of assets in groups and categories is a common procedure that further
enhances decision processes. This is discussed, for example, by A. Rajakrom in the
area of knowledge engineering [30] or by Likar and Trcek with application in sus-
tainable information security [24]. Aggregating assets in a set and then processing
the resulting group of assets as a single entity provide certain benefits: Annotating
context information is resource intensive. By reducing the number of entities, the
resources required to annotate assets can be significantly reduced, with no loss in
quality regarding the annotated features. Information retrieval becomes easier, be-
cause more general characteristics associated with a group of assets can be used as
an identifier. This is especially useful if more specific or more precise identifiers to
initiate an information retrieval are rare.

Asset categorization is also found as a common step in information security (IS)
methodologies, such as the German IT-Grundschutz [12], EBIOS [33], or Octave
[5]. In these examples, the desired goal is reducing complexity in further manual –
or automated – process steps and thereby reducing cost. The use of asset categories
can also be found in availability monitoring frameworks like Nagios1 or Zabbix2.
In these frameworks, network related IT assets are often grouped by the use of
templates, defined by similar asset properties: e.g., location, responsible contact,
type of asset or type of provided service. This reduces redundancy in configuration
and therefore the amount of resources needed to keep configuration aligned with
existing IT infrastructure. Clustering of assets in distinct sets that possess similar
features or requirements is an integral part of various security related specifications,
such as the technical specification of Network Domain Security (NDS) for IP Based

1 http://www.nagios.org/
2 http://www.zabbix.com/

126 Henk Birkholz

Protocols defined by the 3G Partnership Project [2]. In this specification, a security
domain is composed of IT assets of one authority that share the same level of
security and usage of security services. Essentially, defining a security domain is a
decision process regarding IT asset categorization.

IO

IT-infra-
s t ructure

IO-W
IO-C

DHCP

IF-MAP

DHCP

(a) Producer of Information

IO

IT-infra-
s t ructure

IO-W
IO-C

Nagios

IO-Q

ICMP
S N M P

(b) Consumer of Information

Fig. 1. Examples for Producer and Consumer of Information

Organizational memory information systems Abecker and Decker describe an Or-
ganizational Memory Information System (OMIS) as ”basic techniques integrated
into a computer system which within the enterprises’ business activities continu-
ously gathers, actualizes, and structures knowledge and information”. OMIS pro-
vides knowledge in different operative tasks in a context-sensitive, purposeful and
active manner in order to improve cooperative, knowledge-intensive work processes
[3]. The IO framework adopts several of these principles – as do other knowledge
base centered approaches [42,10] – and applies them to ontologically structured
IT asset information. An OMIS incorporates several functions based on principles
of information storage and retrieval in society [23]. These principles were applied
to an IT-supported Information System by Stein and Zwass [35]. They focus on
updating central repositories, containing basic and context information about an
organization, and specify mnemonic functions as shown in figure 3. The require-
ments presented in [35] regarding Knowledge Retention (e.g. structures for different
encoding, or models for organizing past and present knowledge) are satisfied by an
ontology represented in OWL [39]. Hence, IO uses similar functions which will be
presented in section 4.

Organizational behavior and proactivity In order to retrieve information from an
ontology in an ad-hoc fashion (with as little latency as possible) it is mandatory to
acquire the necessary asset information out of the current IT infrastructure proac-
tively. This task can require an investment of technical and organizational resources
without directly visible benefit. This kind of proactive behavior is important [22],

IO: Deploying An Interconnected Asset Ontology 127

but it is also difficult to achieve. Potential reasons for this (e.g. incentives or in-
fluencing factors called enabler and disabler) are discussed in the field of organiza-
tional behavior: research strongly supports that the availability of security related
resources improves the quality and performance of security related actions [20]. This
can be an indirect incentive for stakeholders to deploy IO in an organization.

Group

NetworkComponentGroup

is-a

PersonGroup

is-a

ManagedNCGroup

is-a

NagiosHostGroup

is-a

DHCPRangeMemberGroup

is-a

Contac tGroup

is-a

has-a

Fig. 2. Excerpt of group concept taxonomy

Introducing direct incentives in an organization to enhance proactive behavior
and overall information security is a complex and ceaseless process [17]. Under-
standing some of the underlying principles can help increasing its effectiveness: A
key element in organizational behavior research is understanding and measuring
motivation, which is therefore an important factor to enable proactive deployment
of IO. There are various definitions of motivation throughout the literature of the
last 80 years. One of the best known theories of motivation is proposed by Maslov
[25]: He speaks of a hierarchy of driving forces (needs); the most idealized one, for
example, being self-actualization – the motivation to ”become”. In an organiza-
tional sense, motivation has been described as ”the set of processes that arouse,
direct, and maintain human behavior toward attaining a goal” [19]. Parker et al.
provide a simpler example by defining the intensity of motivation in the traditional
meaning of organizational behavior: ”how much effort one is prepared to put in [a
task]” [28]. Hence, supporting motivation by, e.g. increasing security awareness [21]
or well placed incentives [6], proactive deployment of IO becomes more attractive.
Research of motivation regarding security processes has placed a strong emphasis
on better promoting and enabling security policies [34,38,32]. In these findings, the
online availability of security policies and further context information has a signifi-
cant positive impact on an individual’s motivation to be compliant with the policies:

128 Henk Birkholz

Information which is available online reduces the amount of effort necessary to be
compliant. Making information available through information technology is also an
enabler for better understanding and using complex knowledge [31]. This again is an
indirect incentive for stakeholders arguing towards the deployment of the IO frame-
work. If an acute threat has to be assessed, or if a security requirement in a project
is suddenly deemed mandatory in its late stages [13], the availability of context
information about the IT infrastructure increases the quality of the corresponding
decision process and therefore its outcome.

Producers of
Information

Acquisition

Holding
storage Retention

Maintenance

Distributed
OMIS

Repositories

Search Holding
storage

Retrieval

Consumers of
Information

Fig. 3. Mnemonic Functions of an OMIS [35]

In contrast to the definition of Parker et al., the waste of effort is a well known
disabler regarding motivation [41]. Effort wasted on redundant activities can have a
deleterious effect on task performance. For example, redundant activities can result
in violation of time and resource limits, fatigue, poor learning, poor task knowledge
or even uncompleted tasks due to quitting. As mentioned above, Stein and Zwass
argue that making information available with information technology can be bro-
ken further down into subprocesses like acquisition, maintenance or retrieval [35].
Redundant activities (as a waste of effort) can accumulate over these subprocesses
as part of making information resources available, amplifying this disabler. The
IO framework focuses on eliminating redundant acquisition processes, centralizing
these tasks in a way that information about specific categories of IT assets (e.g.
managed network components) has only to be acquired once and is then available
in a well-structured manner to support any further security related process.

3 Components of the IO framework

In order to identify effective incentives to advocate proactive deployment of IO we
highlight each major function of IO and the potential benefits they can provide
regarding security-related processes. Adapting the basic principles found in Orga-
nizational Memory Information Systems, the IO framework is divided into modules
according to OMIS functions: acquisition, retention, search and retrieval. Figure 4
shows IO functions represented by its modules. Asset information is produced by or
gained form IT infrastructure. Some of it is manually produced by the employees of

IO: Deploying An Interconnected Asset Ontology 129

an organization (e.g. static configuration) and some of it is generated automatically
(e.g. layer 2 address associations on a switch port). Information is consumed by
any task-specific security process that can be supported or enhanced by IT asset
information. In this section basic OMIS functions and their implementation are dis-
cussed. Correspondingly, examples of producers and consumers of information are
described and their characteristics are generally categorized.

Producers of
Information

IO-C

Asset
Information
Repository

IO-W
Interconnected

asset
ontology

IO-Q Index
Repository

IO-Q

Consumers of
Information

Fig. 4. Adaption of function terminology in IO

Producers of information Producer of asset information generally provide two major
categorizes of information: static information and dynamic. Categorization of pro-
ducers of information by the type of information produced is necessary because the
categorization influences corresponding information acquisition procedures. There
are properties by which both groups of information can be discerned: Dynamic in-
formation, for example, often is generated by the IT systems themselves. While this
dynamic generation might be based on static configuration, e.g. a scope of layer 3
addresses available for dynamic distribution, the actual state of dynamic informa-
tion must be extracted from the IT infrastructure in order to be known precisely.
This can be achieved by gathering information either from the providing end or the
receiving end of dynamic information (e.g. DHCP server or DHCP client). While
it is more efficient to acquire information from the providing end – simply because
fewer acquisition procedures are required – dynamic information regarding an asset
is then only known implicitly. Higher information integrity is achieved if the IT asset
utilizing the asset information is directly involved in the acquisition process, ruling
out errors in the distribution process of dynamic information between IT assets.

The mechanism used to acquire IT asset information is another indicator useful
to discern between static and dynamic information. Dynamic information is prone
to high fluctuation. Therefore it has to be updated via IO more often than static
information. This makes a push mechanism far more desirable than a poll mech-
anism. If an IT asset contains a service that can push information about its state
only when its state really changes, the overall resources needed to acquire dynamic
information are reduced significantly. Using poll mechanisms, the IO framework has

130 Henk Birkholz

Listing 1: Build Nagios network map

1: root ← get root device for nagios map
2: devices ← get nagios monitored devices
3: for d in devices do
4: path ← get path(root, d)
5: parent ← get next to last(path)
6: write nagios host entry(d, parent)
7: end

to acquire the whole set of information provided by an IT asset and then compare
it with the last known state.

Hardware identifiers and software configuration located directly on an IT asset
for internal use are the most common example for static information acquired from
producers of information. There also exists dynamic information that is, regarding
its fluctuation, almost similar to static configuration: neighborhood relationships
between core and distribution network components. Neighborhood relationships dy-
namically discovered between managed network components (via the use of, e.g. link
layer discovery protocols) rarely change. In contrast, neighborhood relationships
with mobile devices are very short lived: A wireless client unsuccessfully trying to
connect with an access point repeatedly can result in hundreds of neighborhood re-
lationships within seconds. These highly volatile relationships cannot be processed
by the IO framework efficiently. In this domain, however, other solutions apply: The
IF-MAP specification [37], originating in the context of the TNC specification, is
on one hand able to handle a higher fluctuation rate, but on the other hand lacks
the features to represent more static relationships as is the objective of IO. Figure
1(a) shows an example of a producer of information pushing asset information on
layer 3 address changes via IF-MAP to IO.

Acquisition of information The IO-Collector (IO-C) module is responsible for the
acquisition process in the IO framework. Its goal is to extract raw information about
configuration and asset state out if the IT infrastructure. Raw asset information is
stored in an asset information repository. It handles temporary loss of asset avail-
ability during acquisition procedures and provides an extensive logging engine to
isolate root causes if no information can be acquired about an IT asset. It is im-
portant to differentiate between permanently removed or temporary unavailable IT
assets in order to reduce number and size of updates. Protocols used in the acqui-
sition process primarily are: SSH, SOAP, SNMP, LDAP and IF-MAP. Information
can be acquired via the IO-Collector in intervals from one minute to days or weeks.
Too small intervals can increase the load on IT assets unnecessarily. Hence, the
definition of e.g. polling intervals has to be aligned with fluctuation of data and the
computing resources available.

IO: Deploying An Interconnected Asset Ontology 131

Listing 2: Group monitored devices by building

1: hostgroups ← new(Hash)
2: devices ← get nagios monitored devices
3: for d in devices do
4: building ← get building from name(d)
5: if !hostgroups.include?(building) then
6: hostgroups[building] ← new(Array)
7: end
8: hostgroups[building].append(d)
9: end

10: for building, devs in hostgroups do
11: write nagioshostgroupentry(building)
12: for d in devs do
13: add member to hostgroup(building, d)
14: end
15: end

Retention of information Acquired interconnected asset information is stored in an
ontology via the IO-Writer (IO-W) module. Depending on source, encoding and
syntax a modular set of parsers is used to extract individuals, data properties and
object properties according to the ontological concept layout used by IO (repre-
sented in OWL). Examples are: a neighborhood relationship is represented by an
object property chain. Discernible physical or virtual IT assets are each represented
by an individual. An interface status (e.g. up, down, administratively down or error
disabled) is represented by a data property. In some cases it is difficult to discern a
virtual IT asset from a physical IT asset based on acquired raw information alone.
If asset information about a hosting IT system contains meta data about its hosted
virtual IT systems, it is possible to derive the appropriate object properties auto-
matically during the retention process. In other cases where, e.g., high availability
of core routers is achieved by seamless virtualization over different physical devices,
predefined and device specific context knowledge is necessary and included in the
parser modules to enable correct classification and representation in IO.

Listing 3: Generate clusters by security requirements

1: devices ← get devices
2: clusters ← new(Clusters)
3: for d in devices do
4: neighbors ← get neighbors(d)
5: security requirements ← get security requirements(d)
6: for n in neighbors do
7: n security requirements ← get security requirements(n)
8: if n security requirements = security requirements then
9: clusters.add cluster membership(d, n)

10: end
11: end
12: end

132 Henk Birkholz

Search and retrieval of information Search and retrieval procedures are both con-
ducted by the IO-Query (IO-Q) module. The search function offers a SPARQL [29]
interface in order to infer information via the use of a reasoner. Reoccurring search
operations initiated by several retrieval functions are cached as indexed result lists
(IRL) in an index repository. Some essential IRLs are automatically generated after
an ontology update. Time-critical retrieval operations, as can be found in the SIEM
context, can make deliberate use of automatically generated IRLs during informa-
tion retrieval and thereby increase retrieval performance significantly [11]. Retrieval
procedures can also make direct use of the search function. Output of the retrieval
function is primarily composed of: REST, JSON, CSV or SCAP-AI format. Further
application specific output can be generated via optional output modules.

Consumer of information Interconnected asset information is useful in various secu-
rity related processes [9,18]. Figure 1(b) shows an example introducing a consumer
(a Nagios network monitoring service) of information utilizing the interconnected
asset information provided by IO. In this example it is important to keep the on-
tology updated frequently. This can be supported by the example of a producer of
information 1(a): IP address changes of monitored IT assets should be pushed in
real-time to update IO. The following sections introduce a group concept and focus
on requirements regarding consumer of information.

4 Group concept in IO

In an ontological representation an asset categorization can be expressed in two
ways: by the use of data properties or by the use of object properties. While the use
of data properties doesn’t increase the complexity of the concept layout, it increases
response times of the search function: every type of individual that could poten-
tially be a member of a group has to be evaluated by the reasoner. Using object
properties to associate members of a group with a corresponding group individual,
a reasoner can select appropriate individuals more efficiently while conducting a
search operation. Figure 2 shows the group concept layout in IO, which is struc-
tured taxonomically. Examples of group individuals representing categorization of
assets are: ”internal layer 3 addresses” or ”external layer 3 addresses”, ”located in
building” or ”located in administration building”, ”IT-Grundschutz module Linux
server” [12] or ”Nagios http server object”. Application specific categorizations, such
as Nagios templates, are available in IO and can be used by other consumers of in-
formation if the need arises. Especially intelligent algorithms, as used in the FIDES
framework [1], benefit from detailed annotated context information, supporting the
detection of new, hidden dependencies in event streams.

IO: Deploying An Interconnected Asset Ontology 133

Listing 4: Validation of SD requirements

1: firstSD ← get sd members(first)
2: secondSD ← get sd members(second)
3: invalid ← new(Array)
4: for f in firstSD do
5: for s in secondSD do
6: path ← get path(f, s)
7: if !contains sg(path) then
8: invalid.append([f, s])
9: end

10: end
11: end
12: return invalid.empty?()

5 Use Cases

Automatic generation of Nagios configuration We present two use cases regarding
the automatic generation of application specific configuration from interconnected
asset information: First we show how to generate a Nagios configuration without any
previously annotated categorization in use case 1a presented in listing 1. In use case
1b (listing 2) we demonstrate how to automatically annotate group membership by
defining hostgroup templates in a Nagios configuration.

Automatic support of network domain security according to the 3GG NDS speci-
fication The 3GG network domain security specification defines security domains
(SD). Security domains are groups of interconnected assets in a network sharing
identical security requirements. One group of assets composing a SD is only al-
lowed to communicate with another SD via security gateways (SG). SGs therefore
should provide the only possible communication paths between SDs. Use case 2a,
presented in listing 3, shows how to group assets into a potential SD according
to their security requirements. Use case 2b validates a given categorization of SDs
(represented by a group of assets), as presented in listing 4, by identifying potential
invalid communication paths between SDs that do not traverse a SG.

shows how to group assets into a potential SD according to their security re-
quirements. Use case 2b validates a given categorization of SDs by identifying in-
valid communication paths between SDs, not traversing a SG and violating security
requirements.

6 Conclusion

A primary objective of this paper is introducing a terminology that originaly came
from OMIS and adapting it to the workflow of the IO framework. A complete OMIS
implementation includes a significant larger scope of context or meta information
than IO does. This complexity made the deployment of an OMIS challenging. In

134 Henk Birkholz

comparison, IO’s specific approach – concentrating on asset-related context infor-
mation – results in a far less complex concept layout. In combination with its generic
group concept, this is enables the acquisition of more complete context information
which eases the utilization of the IO framework in practice.

But the initial effort to deploy IO in an organization can still be high: automatic
acquisition procedures must be implemented and accessing sensitive infrastructure
information always presents a significant threshold that has to be overcome. It is
important to provide direct benefits as an incentive to deploy a framework such
as IO. The use cases presented offer such a direct benefit and we can show that
the results are plausible and directly usable. After a successful deployment, further
security processes are enabled to access a proactively provided pool of context in-
formation, reducing redundant acquisition processes and thereby cost. To provide
detailed asset and context information to virtually any consumer of information
a scalable mechanism enabling search functions is necessary: The IO group con-
cept taxonomy – as a step towards a standardized representation of detailed asset
information – satisfies this requirement and enables information retrieval even if
identifiers are sparse.

References

1. FIDeS development website. http://www.fides-security.org

2. 3rd Generation Partnership Project. 3G Security; Network Domain Security (NDS) – IP Network
Layer Security, 2011.

3. A. Abecker and S. Decker. Organizational memory: Knowledge acquisition, integration, and retrieval
issues. In Knowledge-Based Systems. Survey and Future Directions, volume 1570 of LNCS, pages
113–124. Springer, 1999.

4. A. Abecker et al. Organizational memory. Informatik-Spektrum, 21:213–214, 1998.

5. C. J. Alberts and A. J. Dorofee. Managing information security risks the OCTAVE approach, 2003.

6. R. Anderson. Information security economics - and beyond. In Deontic Logic in Computer Science,
volume 5076 of LNCS, pages 49–49. Springer, 2008.

7. G. W. Ault et al. Asset management investment decision process. 2004.

8. W. Barth. Nagios: System And Network Monitoring. No Starch Press Series. Open Source Press,
2006.

9. L. Beaudoin and P. Eng. Asset valuation technique for network management and security. In Data
Mining Workshops, 2006. ICDM Workshops 2006. Sixth IEEE International Conference on, pages
718 –721, 2006.

10. A. Birk and F. Kröschel. A knowledge management lifecycle for experience packages on software
engineering technologies. In Learning Software Organizations, volume 1756 of LNCS, pages 142–160.
Springer, 2000.

11. H. Birkholz et al. IO: An interconnected asset ontology in support of information security applications.
In 7th International Conference, Availability, Reliability and Security, Prague, Czech, 2012.

12. BSI. German IT Baseline Protection Manual. 2011.

13. P. T. Devanbu and S. Stubblebine. Software engineering for security: a roadmap. In Proc. of the
Conference on The Future of Software Engineering, ICSE ’00, pages 227–239. ACM, 2000.

14. P. T. Devanbu and S. Stubblebine. Software engineering for security: a roadmap. In Proceedings of the
Conference on The Future of Software Engineering, ICSE ’00, pages 227–239, New York, NY, USA,
2000. ACM.

IO: Deploying An Interconnected Asset Ontology 135

15. A. Ekelhart et al. Formal threat descriptions for enhancing governmental risk assessment. In Proc.
of the ICEGOV 2007, pages 40–43, New York, NY, USA, 2007. ACM.

16. A. Ekelhart et al. Ontology-based decision support for information security risk management. In Proc.
of the 4th IEEE SMC 2011, pages 80–85, Washington, DC, USA, 2009. IEEE Computer Society.

17. E. Gal-or and A. Ghose. The economic incentives for sharing security information. Information
Systems Research, 16:186–208, 2005.

18. A. Garland et al. Characterization of network topology to support infrastructure asset management.
Public Works Management & Policy, 14:81–101, 2009.

19. J. Greenberg and R. Baron. Behavior in organizations: understanding and managing the human side
of work. International student edition. Allyn and Bacon, 1993.

20. T. Herath and H. R. Rao. Protection motivation and deterrence: a framework for security policy
compliance in organisations. EJIS, 18(2):106–125, 2009.

21. D. Johnson and H. Koch. Computer security risks in the internet era: Are small business owners
aware and proactive? In Proc. of the HICSS 2006, volume 6, page 130b, 2006.

22. A. C. Johnston and R. Hale. Improved security through information security governance. Commun.
ACM, 52(1):126–129, 2009.

23. K. Krippendorff. Some principles of information storage and retrieval in society. General Systems,
20:15–35, 1975.

24. B. Likar and D. Trcek. A Methodology for Provision of Sustainable Information Systems Security.
Cybernetics and Systems, 43(1):22–33, 2012.

25. A. Maslow. Motivation and personality. Harper’s psychological series. Harper, 1954.
26. M. Maybury et al. Analysis and Detection of Malicious Insiders. Technical report, 2005.
27. N. Nagappan. A software testing and reliability early warning (strew) metric suite. PhD thesis, North

Carolina State University, 2005.
28. S. K. Parker et al. Modeling the Antecedents of Proactive Behavior at Work. Journal of Applied

Psychology, 91(3):636–652, 2006.
29. E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF. W3C recommendation,

2008.
30. A. Rajakrom et al. Asset Categorization for Enhanced Asset Management Using Object Oriented

Approach. 2006.
31. D. Robey et al. Information technology and organizational learning: a review and assessment of

research. Accounting, Management and Information Technologies, 10(2):125 – 155, 2000.
32. A. M. Saks and M. Belcourt. An investigation of training activities and transfer of training in

organizations. Human Resource Management, 45(4):629–648, 2006.
33. Secrétariat général de la défense nationale. EBIOS Section 1 Introduction, 2004.
34. M. Siponen. A conceptual foundation for organizational information security awareness. Information

Management and Computer Security, 8(1):31–41, 2000.
35. E. W. Stein and V. Zwass. Actualizing organizational memory with information systems. Information

Systems Research, 6(2):85–117, 1995.
36. A. Syalim et al. Comparison of risk analysis methods: Mehari, magerit, nist800-30 and microsoft’s

security management guide. In ARES 2009, pages 726 –731, 2009.
37. TCG Trusted Network Connect. TNC IF-MAP Binding for SOAP, 2012. Version 2.1 Revision 15.
38. K. Thomson and R. von Solms. Information security awareness: educating your users effectively.

Journal of Management Information Systems, 11(1):167–187, 1998.
39. W3C. OWL 2 Web Ontology Language Document Overview. Technical report, 2009.
40. A. Wagner et al. Experiences with worm propagation simulations. In Proceedings of the 2003 ACM

workshop on Rapid malcode, WORM ’03, pages 34–41, New York, NY, USA, 2003. ACM.
41. R. E. Wood et al. Motivation and information search on complex tasks. In Work motivation in the

context of a globalizing economy, pages 27–48. 2001.
42. M. Yi. Information organization and retrieval using a topic maps-based ontology: Results of a

task-based evaluation. Journal of the American Society for Information Science and Technology,
59(12):1898–1911, 2008.

Between Early Warning and Emergency

Response - An economical perspective -

Heiko Kirsch1 and Michael Hoche2

1 Secure Mobile Networking Lab,
Technische Universität Darmstadt, D-64293 Darmstadt, Germany

heiko.kirsch@seemoo.tu-darmstadt.de
2 Integrated Systems Engineering, EADS Deutschland GmbH / Cassidian

D-88039 Friedrichshafen, Germany
michael.hoche@cassidian.com

Abstract. This contribution outlines different perspectives on risk management applica-
tions for early warning and emergency response. The set of best practices and standards
in the area of risk management is enriched by an economic perspective based on analytical
foundations comprising concepts like machine learning, game theory or mechanism design
borrowed from economic and computer science. We derive a cohesive approach to enable
risk-informed decisions in the adverse security environment for recommending rational, ade-
quate emergency response. Our primary focus is on decision support for optimal service value
instead of focusing optimizing resource management. We lay down a concept to establish a
mechanism that ensures proactive and reactive implementation of security countermeasures
to meet real economical security needs.

1 Introduction

Due to our society’s increasing demand of reliable and secure information technology
and emerging regulatory, i.e. legal obligations to ensure resilience of infrastructures
providing services, especially in terms of critical information infrastructures, there
are needs for an economical approach to cope with inherent threats and vulnera-
bilities (see [19]). Despite the ongoing implementation of the requirements defined
by the European Union (see [3]), the adoption of the ”Communication on Critical
Information Infrastructure Protection (CIIP)” (see [4]) for establishing ”policies to
strengthen the security of and the trust in information infrastructures” is still not
fully accomplished. The further definition of concrete development plans on CIIP
is based on the following five fundamental areas as defined in [4]:

1. Preparedness and prevention: Defining of baseline capabilities and services
for emergency response to enable information sharing and best practice exchange
(see [6] and [7])

2. Detection and response: Provisioning of adequate early warning mechanisms,
reaching out to citizens and organizations to enforce public-private partnerships
(see [10] and [8])

Between Early Warning and Emergency Response 137

3. Mitigation and recovery: Reinforcing of comprehensive defense mechanisms,
e.g. by national contingency plans and regular exercises, to establish trust rela-
tionsship (see [9])

4. International cooperation: Enabling closer pan-European coordination and
strengthening international cooperation to align legal and regulartory require-
ments (see [5])

5. Criteria for Development: Identifying information infrastructure critical for
the society and supporting future implementation of CIIP (see [12])

The formulated need for adequate preparation to cope with emergency situations
regarding information security incidents at organizational, national, European and
international level is facing to divergent, and sometimes competive interests of in-
volved stakeholders. They have to handle a diversity of legal and regulatory frame-
works (see [5]), an a priori opaque risk situation due to the asynchronous and asym-
metric character of emerging threats (see [24]) and retain competitive advantages
by efficient and effective service delivery to their customers (see [1]).

However, even if providers are aware of information security as enabler for con-
tinuous service provisioning following all available best practices provided by the
European Network and Information Security Agency (ENISA), the International
Organization for Standardization (ISO), the National Institute of Standards and
Technology (NIST), or the German Federal Agency for Information Security (BSI)
to implement proactive measures to ensure information security due service op-
eration, i.e. [13], [23] and [2], residual weaknesses are likely to remain (see [17]).
This non-knowledge renders controls ineffective and thus information security in-
cidents possible, potentially with both direct and indirect adverse impacts on an
organization’s business operations. Further, inevitably new previously unidentified
or continuous evolving threats will occur. Adequate preparation by an organiza-
tion in terms of efficient and effective management of such incidents and emergency
situations needs an economical perspective to address emerging risks (see [11]).

2 Fundational Concepts

Classically, implementing an effective response capability involves several decision
making and operational processes (see figure 1). This include definition of policies,
objectives, and responsibilies within the organizational structure. Considerations
about policies requires an organization-specific definition of terms like ”informations
security events” and ”information security incident” including ”early warning” and
”emergency”. Usually this perspective lacks the dimension of collaboration since it
focusses to only one organization. The approach leads to an organizational boundary
focussing on legal and regulatory requirements. As a consequence in network like
systems — where many parties or organizations contribute — there is a lack of

138 Heiko Kirsch, Michael Hoche

securing emergent properties. Because definitions are slightly varying between the
standard-developing organizations, we derive the follwing summary.

Fig. 1. ”Information Security Incident Management” process based on [18]

2.1 Monitoring and Early Warning

The first challenging part of the incident response process is accurately detecting
and assessing possible events, and determining reliable whether an incident has
occurred. Thus the deployment of detection methods within the infrastructure is
needed. This can be approached by continuous monitoring (see [23] or [13]), i.e. to
collect information about the operational state of provisioned and consumed ser-
vices and the underlying technical and organizational systems. Primary intend is to
identify indications and precursors for emerging attacks and security incidents to
establish proactive measures. The interpretation of events in terms of precursors can
be considered as early warning, if identified. The information gained form a mon-
itoring system can serve as input for further risk-driven prioritization for incident
handling procedures as defined e.g. in [18] or [22].

2.2 Information Securty Events and Incidents

In [14] information security incidents are considered as adverse events. Information
security events can be ”captured” by deployed detection mechanisms sparsely or as
a series of similar events. Whether the detection result is correct or not depends
roughly on the recall and the precision of the detection mechanism. Security inci-
dents have certain probability of compromising business operations and threatening
information security in terms of e.g. confidentiality, integrity and availability.

2.3 Incident Handling and Emergency Response

Incident handling as ongoing process comprises any respond to information security
incidents, including the activation of appropriate controls for the prevention and
reduction of impacts of, and hence the recovery from service derivations (see [22]).

Between Early Warning and Emergency Response 139

Thus appropriate incident handling enables timely reaction and continuous service
delivery. As far as the estimated risk induced by incidents is at ”severe” level also
the terms ”emergency” and ”emergency response” are used (see [18]).

2.4 Risk-Informed Decision

A risk-informed decision is decision making, in which insights from probabilistic
risk assessments are considered with other insights (see [20]). In mature organiza-
tions that manage complex insecure or unpredictable objects, risk-informed decision
making is organizational embedded. Often there is a guidance for a procedure that
comprises risk assessment, decision, mitigation and control cycle, i.e. [21] or [16].
The challenge within this approach is archiving the needed correctness and com-
pleteness of the assessment of assets and expected impacts from the point of view
of all impacted stakeholders (see [1]).

To circumvent this difficulties in an adverse complex environment we propose
a pragmatic collaborative approach measuring the real economical value of assets
to be protected as well as the observed deficits, that are due to anomalies. To
reduce the complexity introduced by misaligned strategies of incorporated parties
we provide a generic assessment model incorporating the notions agency, strategy,
interaction, behavior, value and deficit. This allows in advance to render economic
and intentional perspectives for any stakeholder group.

3 Economic Perspective

We deviate from the conceptual approach of economics of information security that
has recently become a thriving and fast-moving discipline. Instead we intend to
identify advantageous interactions in collaborative scenarios by enlighten the opaque
relation between security events and payoff. To provide these insights, we introduce
a formal unifying mechanism for detecting collaboratively anomalies combined with
a mechanism transferring — in an incentive compatible way — recognized deficits
for improving prediction and analysis.

3.1 Economic (repeated) Game

An asset is anything tangible or intangible that is capable of being owned or con-
trolled to produce value and that is held to have positive economic value. We con-
sider services as the assets. Services might be consumed or provisioned by agents
or even by a community or society of multiple agents.

As representation of the involved interacting parties, we introduced the notion of
agents. Agents have the capability of selecting a strategy of interactions based
on their beliefs, desires and intensions. Each agent is assumed to make her own

140 Heiko Kirsch, Michael Hoche

decisions influenced by her intentions, her assumptions, her environment and her
constraints to maximize her payoff.

The admissible strategies of an agent consists of the consumable services and
the set of provided services. The concrete payoff function is composed of the
value add v(s) of a service invocation, the cost c(s) imposed and the deficit d(s), if
the service was executed with security deficiencies

p(s) = v(s)− c(s)− d(s).

3.2 Agent Categorization

The agents in this game are the service providers and the service consumers. We
can categorize agents according to their role within this game as

– Direct participating agents contributing to the provisioning or consumption
of a service s including the agents that consume or provide services, the service
depend or rely on. Dependent services are services that are provisioned and
consumed for provisioning the service. The set of direct participating agents
consists of agents provisioning or consuming these service invocations.

– Indirect participating agents having potentially caused or recognized be-
havior leading to deficiencies. These are potential defenders or attackers. These
agents might had already experience in executing deficient strategies.

– Constructive agents contribute to the recognition of and counteracts against
behavior leading to deficiencies, i.e. defenders.

– Destructive agents causing direct or indirect consciously or unconsciously,
intended or non-intended behavior leading to deficiencies. These class of course
comprises the potential attackers.

Note that this categorization of agents does not assume or imply intent, which is the
major difference compared to classical security games. Even a victim of an attack
could be classified as destructive. Agents are not a priori divided into attackers or
defenders. We intend with this model to identify the experience agents to learn
faster and more reliable relations between anomalies, services and deficits. Therefor
we will introduce profiles.

3.3 Mechanism Design

Inside the model, deficits are assumed to be continuously estimated based on obser-
vations made in the past. These continuously and coherently evaluated deficits are
transferred to the experienced agents, i.e. agents with a similar profile as a rationale
for transfer. This transfer reverses the security risk diffusion, such that deficits will
concentrate on the origins of recognition, making the experienced agents witnesses
for a collaboratively recognized and shared deficit. It allows to trace back defective
service invocations, i.e. assets requiring to be secured.

Between Early Warning and Emergency Response 141

As a consequence, when transferred deficits exceed, there must be a rationale
inside a profile. By investigating an agent’s profile one can reason about the deficit
and about the severity of the impact on the agent, i.e. the aggregated damages
for effected agents and the aggregated damage that were caused by the agent’s
behavior. And one can estimate the value of the remedies. We expect that mere
allocated aggregated deficits will motivate agents to contribute their capabilities
and resources to reduce security risks.

This approach resolves the dilemma of the most common assumptions made,
namely that risk tolerance will naturally be sanctioned economically. This assump-
tion betrays a misunderstanding of the distributed characteristics of security which
is now rectified by the consequent transfers.

Agents have a profile of admissible strategies, values and costs, residual value
deficits, and transferred deficits. The profile trail corresponds to a reputation. These
profiles comprise streams of joint strategy selections of agents that reflect consump-
tion and provisioning of services. Each agent’s intentions yield to actions in a special
context influencing her payoff.

3.4 Operational Semantics

To enable the estimation of deficits it is necessary to agree on a service invocation
semantics, i.e. an agreed model of operations. Consider the service system having
some not-observable states and a transition function

ξ : X → Σ(X),

where Σ(X) indicating the possible outcomes of taking a transition. Let Σ be
the signature and X be the carrier or states. This behavior model describes
the relation of systems and their behaviors in terms of outcomes. An information
system together with a starting state x0 forms a process. A starting state is as-
sumed to correspond one-to-one to a service invocation. We use morphisms as
structure preserving mappings to investigate relationships between systems. This
sketched co-algebraic definition is a relaxed form of specification that allows to
connect adaptively observation of measurements with transitions, i.e. behaviors.

To make for instance the transitions observed more explicit consider e.g. labeled
transition systems. These are a triple (X,Λ,→) out of explicit states X, labels Λ
and transitions →⊆ X × Λ×X. It can be equivalently formulated as a co-algebra
using a power set.

ξX : X → 2Λ×X ∼= (2X)Λ,

where (λ, τ) ∈ cX(s) ⇔ s →λ t. The labels λ ∈ Λ are considered as observ-
ables for transitions τ . We can even identify similar behavior when we extracted
explicit states. Let e.g. ξ : X → 2Λ×X and ξ′ : X ′ → 2Λ×X′

be two co-algebras

142 Heiko Kirsch, Michael Hoche

of transition systems with the same underlying functor. The homomorphism be-
tween these systems is a function f : X → X such that 2Λ×f ◦ ξ = ξ′ ◦ f , where
2Λ×f : V �→ {(λ, f(s)) | (λ, s) ∈ V }. This commutation is equivalent to bisimula-
tion. The concrete semantics can embed multiple monitoring systems, i.e. multiple
labelings L = {Λi | i ∈ I}, each spawning its own algebra or system X → 2Λi×X .
These systems embed canonically into the unifying algebra ξX : X → 2

⋃
L×X .

3.5 Deficit Estimation

Finally, this is a method for formally making behavior explicit allowing to quantify
deficiencies following a learning approach. Let (machine) learning be the task of
inferring a function from supervised training data. The training data consist of a set
of training examples. Each example is a pair (x, y) consisting of behavior x as input
values and an associated deficit as output values. A learning algorithm analyzes the
training data and produces an inferred function, the regression function f : x �→ y
with minimal error. We gather training data out of feedback from the experienced
agents and derive estimators for deficits. By that we can collaboratively identify and
integrate relevant features as a latent semantics that influence deficits by means of
regression functions implementing collaborative filtering.

The setting outlined allows to consider the value of information security as
an economic good. However, the responsibility for ensuring information security is
assigned to different domains in the realm of selfish acting agents, i.e. the organi-
zations mentioned in the standards. They naturally follow their economic interests
to maximize their payoff when interacting, while interactions in this setting are the
provisioning and consumption of services inside the covering social-economic sys-
tem. We used a relaxed notion of game borrowed from Game Theory, where we
assume money as a yardstick for a value maximizing strategy, because it can be
easily transferred between agents.

3.6 Profiles

How a specific agent interacts collaboratively (or selfish) should be a rational deci-
sion maximizing the specific agent’s payoff. The agents will follow their motivational
imperative according to their divergent interests. There are two major interest: max-
imizing the utility for each agent and decreasing deficits. Assume that each agent i
intends to follow strategies s maximizing her payoff pi(s) = vi(s)−ci(s)−di(s). The
communality, i.e. all stakeholders together intends to minimize

∑
i di(s) as social

welfare. We consider the stream of selected strategies together with impact values
as impact profile

πi = (st, vt, ct, dt)t∈T

for agent i over time T , where st is the selected strategy at time t that implies the
values vt, cost ct, estimated deficit dt.

Between Early Warning and Emergency Response 143

Profiles allow identifying relevant experience as neighborhood. This has the ad-
vantages of simplicity, justifiability, efficiency and stability with respect to changing
profile arrangements and changes in the adverse environment.

3.7 Relevant Communities and Experience

Consider e.g. the relevant community of experience by the similarity of pro-
files. This community is the set of agents sharing similar deficits when following
similar strategies. Let 〈πi, πj〉 be a corresponding similarity metric, e.g. the Co-

sine Vector similarity CV (x, y) = xT y
‖x‖·‖y‖ or the Pearson Correlation PC(x, y) =

(x−E(x))(y−E(y))√
(x−E(x))2(y−E(y))2

.

Similarity metrics enables us also to concentrate deficits to experienced agents.
These are the agents having the information necessary in their profile for deriving
countermeasures. Collaboration needs are indicated by transferring deficits to those
agents that can influence value deficits. We thus concentrate diffuse liability onto
experienced agents by transferring the deficit di of agent i at time t to the agents j
having a similar profile, e.g. according to the rule

aj = di
〈πi, πj〉∑
j〈πi, πj〉 .

requiring to extend the profile information by transfer profile τi = (st, at)t∈T that
indicates the experienced agents.

Regression models allow to integrate different data sources in their model equa-
tions without a priory knowledge. Continuous adaptation gained from the feedbacks
establish a latent semantic. Since expected deficit of agent i becomes predictable,
recommendations can be derived based on profile information πi and the collabo-
ratively established regression estimators. An agent can be advised to use a service
with a lower risk profile. This contributes to the decrease of deficits and hence to
increased security. Concretely this could be realized by maximizing the agent’s util-
ity reflecting cost, risk, and deficit. For any community C of agents and a defined
time interval Ξ, there is a canonical profile aggregation∐

i∈C,t∈Ξ
πi(t)⊕ τi(t),

where the deficits are summed up per strategy, i.e. attached discrete information.
These aggregations constitute a view for the community on relevant model elements
and their associated risk. Note that the deficits are exactly the observed security
risks. By linearity of the used operators — mainly the expectation value and lin-
ear estimators, the model allows to integrate values by summation. Since we have
used only linear mappings and plain set theory, we can aggregate over any model

144 Heiko Kirsch, Michael Hoche

component allowing to investigate evolution of any service, agent, security guard,
semantic structure, etc. This allows profound data mining and root cause analysis
directed by explicit deficiencies.

4 Discussion and Conclusions

Information infrastructures have become an essential and ubiquitos factor in our
economic and social environment. Therefore ensuring information security of these
infrastructures is of increasing concern to our society.

The collaborative treatment of information security as an common economic
good contributing to social welfare offers multiple dimensions of improvement. An
economic approach is fostering collaboration between involved parties even in com-
petitive scenarios and can overcome barriers of misaligned incentives to comply with
minimum securtiy baselines.

The importance of collaboration among diffenrent domains, i.e. legislation and
service provider, is already addressed on a fundamental level. Serveral activities
of the European Commission and of ENISA approaches the exchange of informa-
tion concering information security incidents and emergencies between established
emergency teams of governments and private organizations.

On a long-term perspective, it is vital that organizations participating in such
frameworks experience quantitative, economic payoffs of contributing their knowl-
edge and capabilities. Today, there is lack of precise and reliable evidence. Hence
economics of information security are still subject to comprehensive research deliv-
ering valuable insights.

Acknowledgments

We would like to thank our company for the freedom to conduct this work and
our colleagues for listening with patience to the ideas. This document was created
partially in the context of the project ”Attack analysis and Security concepts for
MObile Network infrastructures, supported by collaborative Information exchAnge
(ASMONIA)”, see http://www.asmonia.de.

References

1. Anderson, R., Böhme, R., Clayton, R., and Moore, T.: Security economics and the internal market.
Report to the European Network and Information Security Agency (ENISA), 2007.

2. German Federal Agency for Information Security: IT-Grundschutzkataloge. Bonn (2011)

3. European Commission: Communication from the Commission on Critical Infrastructure Protection -
Achievements and next steps: Towards global cyber security. Official Journal of the European Union,
COM (2011) 163 Brussels (2011)

Between Early Warning and Emergency Response 145

4. European Commission: Communication from the Commission on Critical Infrastructure Protection
- Protecting Europe form large scale cyber attacks and disruptions: enhancing prepardness, security
and resilience. Official Journal of the European Union, COM (200) 149, Brussels (2009)

5. European Commission: Regulatory framework for electronic communications in the European Union.
Information Society and Media Directorarte-General, Brussels (2010)

6. European Network and Information Security Agency: Baseline capabilities for national / governmental
CERTs - Operational Aspects. Heraklion (2009)

7. European Network and Information Security Agency: Baseline capabilities for national / governmental
CERTs - Policy Recommendations. Heraklion (2009)

8. European Network and Information Security Agency: CERT Cooperation and its further facilitation
by relevant stakeholders. Heraklion (2006)

9. European Network and Information Security Agency: Cyber Europe 2010 - Evaluation Report. Her-
aklion (2020)

10. European Network and Information Security Agency: EISAS - European Information Sharing and
Alert System for citizens and SME’s - Implementation trough cooperation. Heraklion (2011)

11. European Network and Information Security Agency: Incentives and Challenges for Information Shar-
ing in the Context of Network and Information Security. Heraklion (2010)

12. European Network and Information Security Agency: Priorities for Reseach on Current and Emerging
Network Technologies. Heraklion (2010)

13. European Network and Information Security Agency: Proactive detection of network security inci-
dents. Heraklion (2011)

14. International Organization for Standardization: ISO/IEC 27000:2011 - Information technology - Se-
curity techniques - Overview an vocabulary. Geneva (2011)

15. International Organization for Standardization: ISO/IEC 27001:2008-09 - Information technology -
Security techniques - Information security managment systems - Requirements. Geneva (2009)

16. International Organization for Standardization: ISO/IEC 27005:2008 - Information technology - Se-
curity techniques - Information security risk management. Geneva (2008)

17. International Organization for Standardization: ISO/IEC 27010:2012 - Information technology - Se-
curity techniques - Information security management for inter-sector and inter-organizational com-
munications, Geneva (2012)

18. International Organization for Standardization: ISO/IEC 27035:2011 - Information technology - Se-
curity techniques - Information security incident management. Geneva (2011)

19. Moore, T. and Anderson, R.: Economics and Internet Security: a Survey of Recent Analytical, Em-
pirical and Behavioral Research. In: Peitz, M., Waldfogel, J. (Eds.), The Oxford Handbook of the
Digital Economy, Oxford University Press 2011.

20. National Aeronautics and Space Administration: NASA Risk-Informed Decision Making Handbook.
Version 1.0, Washington D.C. (2010)

21. United States National Institute of Standards and Technology: NIST Special Publication 800-30 -
Risk Management Guide for Information Technology Systems, Gaithersburg (MD) (2002)

22. United States National Institute of Standards and Technology: NIST Special Publication 800-61,
Revision 1 - Computer Security Incident Handling Guide. Gaithersburg (MD) (2008

23. United States National Institute of Standards and Technology: NIST Special Publication 800-137
- Information Security Continuous Monitoring for Federal Information Systems and Organizations.
Gaithersburg (MD)(2011)

24. Schechter, S.E.: Computer Security Strength & Risk: A Quantitative Approach. In: Ph.D. Thesis,
Harvard University, Cambridge, 2004.

Index

anomaly detection, 92
Anonymous P2P Overlay Networks, 116
AppFlow, 33
ARGOS, 73
Attack Detection, 22
attack function separation, 49
attack vector, 92
automatic flow data processing, 36

backbone network, 38
Backscatter, 21
behavior report, 106
behavioral signature generation, 104, 107
Beta distribution, 96
binary classification, 98
Botnet, 67
brute-force attack, 41

campus network, 37
cluster, 44
collaboration, 114
Collaborative detection and analysis, 119
collaborative IT Early Warning System, 113
Collaborative Resilient Early Warning (CREW),
114
Common data exchange formats, 116
CWSandbox, 105, 109
Cybersecurity Information Exchange Techniques
(CYBEX), 118

data privacy, 114
data privacy issues, 113
data set, 99
DDoS attack, 39
distance measure, 107
distance metric, 44
diurnal pattern, 39
DoS attack, 39
Dropper, 68
dynamic analysis, 103, 104

early warning information system, 102
early warning system, 102
Emergency Response, 138
encrypted traffic, 42
entropy, 47
Ether, 74
evaluation, 98
EWIS, see early warning information system
EWS, 1, 3, 6, 9, see early warning system, 102, 113

feature extraction, 104
flow collector, 33
flow data processing, 35
flow data redistribution, 35
flow data storage, 34
flow export formats, 33
flow stretching, 50
flow-based attack detection, 41
flow-based signatures, 43
FlowMon, 31
fourier transform, 45

generalization, 111
generalizing signature, 104, 111
GNUnet, 116
Goodpool, 107

hiding under threshold, 49
Homomorphic Encryption, 117
honeyclient, 109
Honeyd, 73
Honeypot, 69
honeypot, 109
Horizontal Scan, 21
Hypertext Transfer Protocol, 91

Incident Handling, 138
Incident Object Description Exchange Format
(IODEF), 118
information loss, 47, 48
Information Sharing Network (ISN), 116
intrusion detection, 92
Intrusion Detection Message Exchange Format (ID-
MEF), 118
IP Darkspace, 21
IP flow, 31
IPFIX, 33
IPv6, 28

loss of reputation, 115

Malware, 67
malware, 103
Malware Analysis, 22
malware behavior clustering, 107
malware family, 103
manhattan distance, 107
misuse detection, 92
MPC, 117

148 Heiko Kirsch, Michael Hoche

NetFlow, 33
Nitro, 73
noisy attack, 41
nProbe, 31

on-line learning, 97
originator anonymity, 114
outlier detection, 96

packet sampling, 49
polymorphic variant, 103
Prediction by Partial Matching, 95
privacy, 115
privacy-preserving techniques, 114
Probing, 21
processing flow data, 35

Risk-Informed Decision, 139

Scanning, 21
ScriptGen, 73
Secret Sharing, 117
Secure Multiparty Computation, 116, 117
security incidents, 39
SEPIA, 117
Sharing of warnings, 119

signal processing, 45
signature generation, 102, 104, 107
Sinkholing, 71
situation picture, 104
SSH scanning, 39
static analysis, 103
stealthy attack, 41
system-call, 106

temporal distortions, 50
time series, 47
time window heuristic, 45
Traceable Anonymous Certificates, 116
true positive rate, 109, 110

Unified Resource Identifier, 91
Unwanted Traffic, 22

Vertical Scan, 21
Virtual Machine Introspection, 72

web application, 91
web request, 93

yaf, 31

�������	
�����
����
���
������
���
����������
������
��
������
����
������
����
�����
����
���
���������
��
��������	
��������
��
�����������
��������
���
����
�������
����������
����
��
 ����
!�����	
�����
������
����������
�������
�������

�������
����������
�������
��
�		��
������
��
�����������
���������
"������	

���������
���
�����
��������
������
�������
��
�������
�������
���
����
���
���

���������

ISBN 978-3-8396-0474-8

9 7 8 3 8 3 9 6 0 4 7 4 8

