
A configurable, heterogeneous
Device Cloud for Web Applications

Diplomarbeit

Hannes Gorges
Berlin, 21. Dezember 2010

Technische Universität Berlin
Fakultät IV

Institut für Telekommunikationssysteme
Fachgebiet Offene Kommunikation (OKS)

Franklinstraße 28-29
D-10587 Berlin

Betreuer: Prof. Dr. Dr. h.c. Radu Popescu-Zeletin
Assistierender Betreuer: Robert Kleinfeld

Matrikelnr.: 301068

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

2

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

3

German Abstract
Eine zentrale Herausforderung bei der Entwicklung von Web-Anwendungen, die

mehrere heterogene Geräte gleichzeitig ansprechen, ist diese Geräte zu entdecken und

Zugriff auf die Geräte-spezifischen Ressourcen zu erlangen. Um den Zugriff auf diese

Ressourcen zu ermöglichen, müssen die Benutzer proprietäre Software auf ihren Geräten

installieren.

Andere Geräte nutzen Protokolle wie UPnP, um sich nahtlos mit ihrer Umgebung zu

verbinden. Eine Web-Anwendung, die Ressourcen von heterogenen Geräten benutzt,

muss daher mehrere Schnittstellen unterstützen. Zusätzliche und veränderte Schnittstellen

zwingen den Entwickler die Kraft, seine Web Anwendung anzupassen. Eine

Schnittstelle, die die darunter liegenden heterogenen Endgeräte abstrahiert und dessen

Ressourcen Web-Anwendungen zur Verfügung stellen, ist erforderlich. Diese

Diplomarbeit skizziert den Lösungsansatz für das beschriebene Problem.

Eine Architektur wird benötigt, die die Ressourcen der Endgeräte virtualisiert. Die

freigegebenen Benutzerressourcen werden durch eine einheitliche Schnittstelle

zugänglich, sodass Web-Anwendungen sie ohne Probleme benutzen können.

Benutzergeräte und deren Diensten sind auf eine RESTful API abgebildet Diese API

abstrahiert die ausführenden Ressource. Dabei sind die Kommunikationsprotokolle oder

API's, die von den Ressourcen verwendet werden, komplett vor dem Benutzer der

RESTful API verborgen. Dies erhöht die Interoperabilität für eine losere Kopplung

zwischen den verteilten Geräte, da der Benutzer seine Ressourcen durch andere ersetzen

kann, Das geschieht ohne Änderungen bei den Web Anwendungen, die diese Ressourcen

nutzen. Dies erleichtert die Erstellung von Mashups, die traditionelle Web 2.0-Dienste

mit Ressourcen von Benutzergeräten, kombinieren wollen. Der Benutzer steuert den

Zugriff auf seine Ressourcen über konfigurierbare Regeln. Dieses System bietet

detaillierte Anpassungsmöglichkeiten, um den Zugriff zu regeln. Das beschriebene

Konzept ist die Basis für eine prototypische Implementierung.

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

4

English Abstract
A key challenge during the development of Web Applications on top of multiple

heterogeneous devices is to discover and get access to device-specific resources. In order

to enable access to these resources, users must install proprietary software on their

devices.

Other devices use protocols like UPnP to connect seamlessly with the environment. A

Web Application, which uses resources from heterogeneous devices, must support

several interfaces. New and changing interfaces can force the developer to modify his

Web Application. An interface, that abstracts the underlying heterogeneous user devices

and offers their resources to Web Applications, is required. This diploma thesis

delineates the solution statement for the described problem.

An architecture is required, which enables and virtualizes the resources of user devices.

The shared user resources are accessible through a uniform interface, so that Web

Applications can easily use them. User devices and their services are mapped to a

RESTful API, which abstracts from the executing resource. In doing so, the

communication protocols or API's used by the underlying resource are completely hidden

from the user of the RESTful API. This increases the interoperability for a looser

coupling between the parts of distributed devices, because the user can replace resources

with new ones without an update of the Web Applications, which use these resources.

This facilitates the creation of mashups, which combine traditional Web 2.0 services with

resources from the user. The user controls the access to his resources with a user-

configurable rule-based system. This system provides fine-granular adjustments for the

access rights to user resources. The described concept is the base for a prototype

implementation.

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

5

Vorwort
Die Diplomarbeit ist nun fertig. An meiner Seite gab es einige Menschen die mich

während des Schreibens und Implementierens unterstützten. Da ist in erster Linie meine

Familie zu nennen. Ich danke meiner Frau Irina und unserem Sohn Kevin, dass ihr mir

die nötige Zeit gegeben habt, um diese Arbeit zu schreiben. Ihr habt mir den nötigen

Rückhalt gegeben. Dann gibt es noch einen Dank an meinen Bruder Martin. Er

unterstützte mich mit seinem Wissen bei der Implementierung. Natürlich konnte er bei

unseren Diskussionen einiges mehr von seinem großen Bruder lernen.

Dann sind da noch die klugen Köpfe von den wöchentlichen Diplomandentreffen im

Fraunhofer Fokus. Der rege Gedankenaustausch war sehr beflügelnd. Mit in den Treffen

saß mein Betreuer Robert. Danke für die richtungsweisenden Tipps. Ein weiterer Dank

geht an Judith. Du warst (fast) immer für mich da und hast mir deine Talente zur

Verfügung gestellt. Letzter Dank geht an Steffen K., der sich bereitwillig angeboten hat,

meine Diplomarbeit Korrektur zu lesen und sogar zwei Kapitel gelesen hat.

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

6

Hiermit erklärt der Autor an Eides statt, dass er die Arbeit ohne unerlaubte Hilfsmittel
und unter ausschließlicher Verwendung der genannten Quellen angefertigt hat.

Berlin, den 21. Dezember 2010

Hannes Gorges

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

7

Content
German Abstract ... 3

English Abstract.. 4

Vorwort ... 5

List of figures .. 10

1 Introduction... 13

 Motivation .. 13 1.1

 Objectives and Scope ... 16 1.2

1.2.1 An overview for the described objectives .. 17

 Methodology and Outline .. 17 1.3

2 State of the art technologies .. 19

 General principles and definitions ... 19 2.1

2.1.1 Service .. 19

2.1.2 Resource ... 19

2.1.3 Web Service .. 19

2.1.4 Web Application ... 20

2.1.5 REST .. 22

 Mashups ... 23 2.2

2.2.1 Auto-generated Mashups .. 24

 Access Control and Rule Engines .. 26 2.3

2.3.1 RBAC ... 26

2.3.2 X-GTRBAC .. 27

2.3.3 Java Rule Engine .. 28

2.3.4 Further approaches.. 29

3 Related Background - Approaches with related objectives 33

 BONDI ... 33 3.1

 Universal Plug and Play ... 34 3.2

 Web of Things .. 35 3.3

 SenseWeb and Pachube ... 39 3.4

 Summarizing .. 40 3.5

4 Concept ... 43

 User story ... 43 4.1

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

8

 Server architecture .. 45 4.2

4.2.1 System Overview .. 46

4.2.2 Persistence Layer ... 48

4.2.3 Business Layer .. 48

4.2.4 Presentation Layer ... 49

4.2.5 Service Layer ... 49

 Property Framework ... 50 4.3

4.3.1 Server architecture extension .. 51

4.3.2 Rule creation GUI ... 52

4.3.3 Types of rules .. 53

4.3.4 Realization of RBAC... 55

4.3.5 Principles ... 56

 User devices .. 61 4.4

4.4.1 Register user devices ... 61

4.4.2 Connect a user device to the server ... 62

 Communication... 63 4.5

4.5.1 Abstract Interfaces for Web Applications ... 63

4.5.2 Access rights.. 64

4.5.3 Presentation of communication methods .. 66

4.5.4 Analysis of communication methods .. 72

 Conclusion .. 75 4.6

5 Realization ... 77

 Server .. 77 5.1

5.1.1 Persistency Layer .. 79

5.1.2 Business Layer .. 82

6 Conclusion ... 91

 Summarize and conclusion ... 91 6.1

 Future Work .. 92 6.2

6.2.1 Indirect connected devices .. 92

6.2.2 Community features .. 93

6.2.3 MashSSL ... 93

6.2.4 Atom feed .. 94

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

9

6.2.5 Quality of Service ... 95

7 Appendix... 97

 References .. 97 7.1

 Acronyms ... 101 7.2

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

10

List of figures
Figure 1: Web 2.0 services by Ludwig Gatzke ... 13

Figure 2: Google trends - Web 2.0 and Social Media [2] ... 14

Figure 3: Data flow for a Web Application ... 21

Figure 4: REST concept .. 22

Figure 5: QoS-Oriented Mashup Framework [18] .. 24

Figure 6: Mashup framework from [19].. 25

Figure 7: RBAC Level 1 ... 26

Figure 8: X-GTRBAC architecture [24] ... 27

Figure 9: UPnP protocol stack with services... 34

Figure 10: High level overview of the Web of Things core [34] 36

Figure 11: Devices with Web Server [27] ... 37

Figure 12: Smart Gateway [27] ... 38

Figure 13: Maps with sensor markers from Senseweb and Pachub 39

Figure 14: Use Case: Setup ... 44

Figure 15: <Device Cloud> architecture 1.0 ... 46

Figure 16: 3-Tier Architecture .. 47

Figure 17: <Device Cloud> architecture 1.1 ... 51

Figure 18: Rule creation GUI .. 52

Figure 19: Design for rules schema ... 56

Figure 20: Ratio between Server Load and Accuracy ... 59

Figure 21: Server Load - Accuracy ratio with marked points. .. 60

Figure 22: Activity diagram: Access Request ... 65

Figure 23: Component view: Access Request ... 66

Figure 24: Communication: REST via server ... 68

Figure 25: Communication style two .. 69

Figure 26: Communication style three: client pushes ... 71

Figure 27: Communication style three: Web Application pushes 72

Figure 28: Comparison of communication methods ... 73

Figure 29: Implementation view of the server architecture .. 78

Figure 30: Database schema .. 80

Figure 31: Database schema from Property Framework ... 81

Figure 32: Project structure ... 82

Figure 33: Class diagram from the AbstractFacade .. 83

Figure 34: Class diagram from the Persistency API ... 84

Figure 35: Class diagram from the SessionBeans ... 85

Figure 36: Class diagram from the Property Framework .. 86

Figure 37: Views from the UserInterface .. 87

Figure 38: Class diagram from the UserInterface ... 88

Figure 39: Class diagram from the Connectors ... 89

Figure 40: MashSSL .. 94

https://wz3qip.docs.live.net/d73924f6bd44e778/diplom/DAS%20DIPLOM2.docx#_Toc280620350
https://wz3qip.docs.live.net/d73924f6bd44e778/diplom/DAS%20DIPLOM2.docx#_Toc280620351
https://wz3qip.docs.live.net/d73924f6bd44e778/diplom/DAS%20DIPLOM2.docx#_Toc280620352
https://wz3qip.docs.live.net/d73924f6bd44e778/diplom/DAS%20DIPLOM2.docx#_Toc280620353
https://wz3qip.docs.live.net/d73924f6bd44e778/diplom/DAS%20DIPLOM2.docx#_Toc280620354
https://wz3qip.docs.live.net/d73924f6bd44e778/diplom/DAS%20DIPLOM2.docx#_Toc280620355
https://wz3qip.docs.live.net/d73924f6bd44e778/diplom/DAS%20DIPLOM2.docx#_Toc280620356
https://wz3qip.docs.live.net/d73924f6bd44e778/diplom/DAS%20DIPLOM2.docx#_Toc280620357
https://wz3qip.docs.live.net/d73924f6bd44e778/diplom/DAS%20DIPLOM2.docx#_Toc280620358
https://wz3qip.docs.live.net/d73924f6bd44e778/diplom/DAS%20DIPLOM2.docx#_Toc280620359
https://wz3qip.docs.live.net/d73924f6bd44e778/diplom/DAS%20DIPLOM2.docx#_Toc280620360
https://wz3qip.docs.live.net/d73924f6bd44e778/diplom/DAS%20DIPLOM2.docx#_Toc280620361
https://wz3qip.docs.live.net/d73924f6bd44e778/diplom/DAS%20DIPLOM2.docx#_Toc280620362
https://wz3qip.docs.live.net/d73924f6bd44e778/diplom/DAS%20DIPLOM2.docx#_Toc280620363
https://wz3qip.docs.live.net/d73924f6bd44e778/diplom/DAS%20DIPLOM2.docx#_Toc280620364
https://wz3qip.docs.live.net/d73924f6bd44e778/diplom/DAS%20DIPLOM2.docx#_Toc280620365
https://wz3qip.docs.live.net/d73924f6bd44e778/diplom/DAS%20DIPLOM2.docx#_Toc280620366
https://wz3qip.docs.live.net/d73924f6bd44e778/diplom/DAS%20DIPLOM2.docx#_Toc280620367
https://wz3qip.docs.live.net/d73924f6bd44e778/diplom/DAS%20DIPLOM2.docx#_Toc280620368
https://wz3qip.docs.live.net/d73924f6bd44e778/diplom/DAS%20DIPLOM2.docx#_Toc280620369
https://wz3qip.docs.live.net/d73924f6bd44e778/diplom/DAS%20DIPLOM2.docx#_Toc280620370
https://wz3qip.docs.live.net/d73924f6bd44e778/diplom/DAS%20DIPLOM2.docx#_Toc280620371
https://wz3qip.docs.live.net/d73924f6bd44e778/diplom/DAS%20DIPLOM2.docx#_Toc280620372
https://wz3qip.docs.live.net/d73924f6bd44e778/diplom/DAS%20DIPLOM2.docx#_Toc280620373
https://wz3qip.docs.live.net/d73924f6bd44e778/diplom/DAS%20DIPLOM2.docx#_Toc280620374
https://wz3qip.docs.live.net/d73924f6bd44e778/diplom/DAS%20DIPLOM2.docx#_Toc280620375
https://wz3qip.docs.live.net/d73924f6bd44e778/diplom/DAS%20DIPLOM2.docx#_Toc280620376
https://wz3qip.docs.live.net/d73924f6bd44e778/diplom/DAS%20DIPLOM2.docx#_Toc280620377
https://wz3qip.docs.live.net/d73924f6bd44e778/diplom/DAS%20DIPLOM2.docx#_Toc280620378
https://wz3qip.docs.live.net/d73924f6bd44e778/diplom/DAS%20DIPLOM2.docx#_Toc280620379
https://wz3qip.docs.live.net/d73924f6bd44e778/diplom/DAS%20DIPLOM2.docx#_Toc280620380
https://wz3qip.docs.live.net/d73924f6bd44e778/diplom/DAS%20DIPLOM2.docx#_Toc280620381
https://wz3qip.docs.live.net/d73924f6bd44e778/diplom/DAS%20DIPLOM2.docx#_Toc280620382
https://wz3qip.docs.live.net/d73924f6bd44e778/diplom/DAS%20DIPLOM2.docx#_Toc280620383
https://wz3qip.docs.live.net/d73924f6bd44e778/diplom/DAS%20DIPLOM2.docx#_Toc280620384
https://wz3qip.docs.live.net/d73924f6bd44e778/diplom/DAS%20DIPLOM2.docx#_Toc280620385
https://wz3qip.docs.live.net/d73924f6bd44e778/diplom/DAS%20DIPLOM2.docx#_Toc280620386
https://wz3qip.docs.live.net/d73924f6bd44e778/diplom/DAS%20DIPLOM2.docx#_Toc280620387
https://wz3qip.docs.live.net/d73924f6bd44e778/diplom/DAS%20DIPLOM2.docx#_Toc280620388
https://wz3qip.docs.live.net/d73924f6bd44e778/diplom/DAS%20DIPLOM2.docx#_Toc280620389

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

11

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

12

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

13

1 Introduction
This chapter introduces the subject material. The first part gives an overview about the

topic and shows the problems with which this diploma thesis is confronted. The second

part presents objectives, which can be deduced from first part. The last part of this

chapter explains the methodology and gives an outline about this diploma thesis.

 Motivation 1.1
Increasingly, consumer electronics and embedded devices get Internet connectivity. In

addition, fast Internet connections and flat rates enable users to access services from

anywhere at any time.

Buoyed by this evolution, the World Wide Web (WWW) changed into the Web 2.0. Web

2.0 is a buzzword, which describes a great number of innovations on the WWW. These

Figure 1: Web 2.0 services by Ludwig Gatzke

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

14

innovations contain information sharing, interoperability, a more user-centered design

and more. FIGURE 1 shows the explosion of Web 2.0 applications, which came with

these innovations.

Today, there is a new distinct trend, called Social Media. Kaplan and Haenlein described

Social Media as “a group of Internet-based applications that build on the ideological

and technological foundations of Web 2.0, which allows the creation and exchange of

user-generated content."
1
 [1]

FIGURE 2 shows this trend. The chart is generated with a CSV file (comma-separated

values) from Google trends and shows the average search traffic for Web 2.0 and Social

Media [2]. This is a fixed scaling mode, meaning that Web 2.0 starts at 1.0 on the y-axis,

which represents the average search traffic of this term on 11. January 2004. Social

Media has a relative start position at 0.6. The rest of the curve relate to these base values.

The boundaries between local data storage and centralized data storage in the web faded

with Web 2.0. Users can store their pictures on flickr
2
, their holiday videos on youTube

3

or their diploma thesis on the file storage and sharing service Windows Live SkyDrive
4
.

1
 cf. [1] page 61

2
 Flickr is an image and video hosting website and a web services suite from Yahoo!. Online:

www.flickr.com
3
 YouTube is a video-sharing website from Google Inc. on which users can upload, share, and view videos.

Online: www.youtube.com

0

2

4

6

8

10

12

14

16

Ja
n

 4
 2

0
0

4

A
p

r
1

8
 2

0
0

4

A
u

g
1

 2
0

0
4

N
o

v
1

4
 2

0
0

4

Fe
b

 2
7

 2
0

0
5

Ju
n

 1
2

 2
0

0
5

Se
p

 2
5

 2
0

0
5

Ja
n

 8
 2

0
0

6

A
p

r
2

3
 2

0
0

6

A
u

g
6

 2
0

0
6

N
o

v
1

9
 2

0
0

6

M
ar

 4
 2

0
0

7

Ju
n

 1
7

 2
0

0
7

Se
p

 3
0

 2
0

0
7

Ja
n

 1
3

 2
0

0
8

A
p

r
2

7
 2

0
0

8

A
u

g
1

0
 2

0
0

8

N
o

v
2

3
 2

0
0

8

M
ar

 8
 2

0
0

9

Ju
n

 2
1

 2
0

0
9

O
ct

 4
 2

0
0

9

Ja
n

 1
7

 2
0

1
0

M
ay

 2
 2

0
1

0

A
u

g
1

5
 2

0
1

0

Web 2.0

Social Media

Figure 2: Google trends - Web 2.0 and Social Media [2]

http://www.flickr.com/
http://www.youtube.com/

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

15

The same happens with native applications and Web Applications. It is quite common for

applications today, to download updates and additional modules from the Internet. An

example is NetBeans
5
, which only updates automatically over the Internet and offers an

online module support for expanding the IDE. Furthermore it gives Web Applications for

a host of problems and they achieve in some cases the complexity and quality of their

native counterparts. Some companies develop both. They publish a native application for

one or more operating systems and offer a Web Application with similar features. For

example, Microsoft does so with Office 14
6
. The documents from the four MS Office

products Word, Excel, PowerPoint and OneNote are also editable in the browser

(provided the files are on SkyDrive).

A widespread style of software architecture is the component-based style. This style

emphasizes the separation of concerns, the reusability and the maintainability, which

decreases complexity from applications. Components are encapsulated. They provide an

interface which specifies the offered services. Other components can utilize these

services.

Web Services are also components and many Web Applications use them. To build a

Web Application with Web Services decreases the development effort and increases the

possibilities for a Web Application. For example, the Web Service Google maps
7
 offers a

great amount of data and functions to use the data (typically a map) in a web site or in an

application.

Web Services are services, which provide data and functionalities via web technologies.

They commonly use the Hypertext Transfer Protocol (HTTP) as transport protocol and

XML or JavaScript Object Notation (JSON) as data-format. Web Services which

conform to the REST architecture are prevalent nowadays. A Web Service for almost

every use-case exists. But one group of Web Services is greatly underrepresented. Those

are Web Services which operate on device-specific resources, like camera, message

services (for example the Short Message Service (SMS), and the Multimedia Messaging

Service (MMS)), accelerator or localization services like the Global Positioning System

(GPS). These resources are provided by the operating system of the device.

4
 SkyDrive is a file storage and sharing service that allows users to upload files. It is a part of Microsoft’s

Windows Live. Online: skydrive.com
5
 NetBeans is an integrated development environment (IDE) for developing with Java, JavaScript, PHP,

Python, Ruby, Groovy, C, C++, Scala, Clojure, and others. Online: www.netbeans.org
6
 Microsoft Office 14 is an office suite of interrelated desktop applications. It is released 2010 by

Microsoft. Online: microsoft.com/office/2010
7
 Google maps is a Web Service suit from Google Inc., that powers many map-based services. Online:

maps.google.com

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

16

What are the reasons for this underrepresentation?

There are very different groups of user devices, which can be accessed direct or indirect

via web technologies. Devices with access to the web are desktop PCs, Notebooks, 3G
8

mobile phones, handhelds (Nintendo DSi
9
), modern TVs, video game consoles (for

example PlayStation 3
10

), accessible sensors and many more. Currently there are no

broadly accepted standards, which specify access and maintenance of device- specific

resources over web-based technologies in Web Applications. These resources cannot be

controlled and monitored without using proprietary interfaces and dedicated software. As

a consequence, device-specific resources are hard to integrate into composite

applications, which severely hinder the realization of a flexible ecosystem of devices that

can be reused. There are a few solutions with a limited scope for specific device groups.

Wholesale Applications Community (WAC) [3], a framework for mobile phones with

similar objectives. UPnP [4] is a solution for Home Entertainment to connect seamlessly

with the environment. Further explanations to these techniques are in CHAPTER 3.

If a Web Application wants to use these and other similar technologies to enable access

to resources from heterogeneous devices, it must also take care of the support. Additional

and changing interfaces (for example in the case of WAC) or protocols (for example in

the case of UPnP) can force the developer to modify his Web Application. A uniform

interface, that abstracts the underlying heterogeneous user devices and offers their

resources to Web Applications, is required. This thesis reflects this problem.

 Objectives and Scope 1.2
A key challenge during the development of Web Applications on top of multiple

heterogeneous devices is to discover and get access to device-specific resources. In order

to enable access to these resources, users must install proprietary software on their

devices.

Other devices use protocols like UPnP to connect seamlessly with the environment. A

Web Application, which uses resources from heterogeneous devices, must support

several interfaces. New and changing interfaces can force the developer to modify his

Web Application. An interface, that abstracts the underlying heterogeneous user devices

and offers their resources to Web Applications, is required. This thesis delineates the

solution statement for the described problem.

For a satisfactory solution to the problem described above, various targets have to be

implemented successfully.

8
 3G is a generation of standards for mobile phones and mobile telecommunications services fulfilling

specifications by the International Telecommunication Union (ITU).
9
 Nintendo DSi is a handheld game system created by Nintendo and was released in 2008.

10
 PlayStation 3 is seventh generation console which was developed by Sony and was released in 2006.

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

17

The shared user resources have to be accessible through a uniform interface, so that Web

Applications can easily use them. User devices and their services will be mapped to a

RESTful Application Programming Interface (API), which abstracts from the executing

resource. In doing so, the communication protocols or API's used by the underlying

resource will be completely hidden from the client. This increases the interoperability for

a looser coupling between the parts of distributed devices, because the user can replace

resources with new ones without an update of the Web Applications, which use these

resources. This facilitates the creation of mashups, which combine traditional Web 2.0

services with resources from the user. The user controls the access to his resources with a

user-configurable rule-based system. This system provides fine-granular adjustments for

the user resources.

1.2.1 An overview for the described objectives

1. Enable services on heterogeneous and distributed devices for Web Applications

2. Increase interoperability for a looser coupling between the parts of distributed

devices

3. Make services on devices available as REST resources

4. Abstract the proprietary communication protocols or API's of devices and offer

their accessible functionalities via a RESTful API

5. Introduce a user-configurable rule-based system for service access control

 Methodology and Outline 1.3
This diploma thesis describes a solution for the introduced objectives. The next chapter

will discuss related technologies and terms, which are used in this diploma thesis. It is

important to get a sound foundation for the understanding. That’s why CHAPTER 2.1

explains general principles and definitions. CHAPTER 2.2 and CHAPTER 2.3 address the

topics mashups and rules. Both of these topics are important for this diploma thesis. The

lecture of mashups is important, because <Device Cloud> (to be developed architecture)

allows a user to make his personal resources available to Web Applications, which

combine the resources with web-based services to a new mashup. The rule chapter is

important, because of objective 5, which claim a user-configurable rule-based system for

service access control. Therefore the topics need a greater amount of public attention.

With gain knowledge from the research in CHAPTER 2, approaches with similar

objectives can be discussed and valuated. This is happening in CHAPTER 3. In the end of

this chapter, the presented approaches will be compared. The results of CHAPTER 3 flow

into CHAPTER 4, where a concept will be developed, which covers the pre-established

objectives. CHAPTER 5 is the proof of concept. The architecture from the implemented

server will be described in this chapter. A conclusion is given in CHAPTER 6. This

discusses the defined objectives with the concept and the realization. CHAPTER 6

contains also a part about further extension levels from the in CHAPTER 4 designed

architecture. The last chapter contains the appendix with references, acronyms and a

glossary.

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

18

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

19

2 State of the art technologies
The state of research of the above-defined objectives is covered by this section. Concepts

and techniques, which are used within this diploma thesis, are explained first in

CHAPTER 2.1. The elucidations are on a high level view, but they will give an overview

about the described terms. Approaches about related topics, such as mashup creation

engines and rule engines are presented in the next parts of this section.

 General principles and definitions 2.1
This is a short summary about terms and technologies which are used in this diploma.

For further reading, the understanding of these subjects is required. The explanatory

notes will not explain in detail, but give the reader a short overview.

2.1.1 Service

The concept of service in computer science is not clearly defined. There are several

definitions that are dependent on the environment of the term. For example, a service in

enterprise architecture is different from one in a service-oriented architecture. In general

a service is an uncoupled and self-contained piece of software. It offers a set of related

functionalities over a specified interface. This general definition of the term service is

used in this diploma thesis.

2.1.2 Resource

In this diploma thesis, the term service is often replaced by resources. This term has a

broad definition and also includes the term service. For example, a mobile phone has a

SMS and a camera service, which can be used through an API.

There can be further resources available on the mobile phone, besides these services. But

these resources do not fit to the definition of service. Data files and media files like

pictures and movies are one example for resources which are not services.

“A Service is an abstraction of the operations provided by the system on its resources."

[5]. In the example of the mobile phone, the operating system provides low level services

for accessing the resources. These services are for installed native applications. This

diploma thesis has the objective to offer an access to the resources (including high level

services) and not to the low level services.

2.1.3 Web Service

Many sources use the definition from the document WEB SERVICES ARCHITECTURE

[6] from the World Wide Web Consortium (W3C) for Web Service: “Web service is a

software system designed to support interoperable machine-to-machine interaction over

a network. It has an interface described in a machine-processable format (specifically

WSDL). Other systems interact with the Web service in a manner prescribed by its

description using SOAP messages, typically conveyed using HTTP with an XML

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

20

serialization in conjunction with other Web-related standards.”
11

 This definition is from

2004 and limited Web Services to the area of Service Oriented Architectures (SOA) and

the related technologies (for example the UDDI as directory service and the Web

Services Description Language (WSDL)).

Other authors used the term Web Service in a wider sense. Vlad Trifa explained in his

paper CONTENT CREATION ON THE WEB: MASHING UP THE REAL WORLD WITH

THE INTERNET [7] from 2008 Web Services as “loosely-coupled, modular, self-

contained, and reusable software components that can be used to develop distributed

application using standard Web protocols”
12

. This general statement applies more to the

concept of Web Service. Web Services are not only SOA-services, but also all other

services which are based on web protocols (for example Extensible Markup Language

Remote Procedure Call (XML-RPC) and REST). The web serves only as a transport

layer for these services.
13

 [8]

2.1.4 Web Application

An application is a computer program, which helps the user to fulfill a certain task.

Examples for applications are games, graphics software and office suites. An application

differs from system software like the operating system or utilities, which performs

maintenance or general-purpose chores.

Web Applications are applications which are hosted on web servers. A user gains access

to the Web Application over a network such as the Internet or an intranet. The user needs

a client to show the content. In the majority of cases, the client is a web browser.

FIGURE 3 shows a simple data flow for an interaction between a client, in this case a web

browser, and a Web Application. A web server and the hosted Web Application are on

the right side of the drawing. For starting the Web Application, the user types the URL

from the hosting web server in the browser input field. Afterwards the browser sends a

HTTP-request. The server receives and processes the request. The web server forwards

the request to the Web Application, which generates or loads code written in Hypertext

Markup Language (HTML) for the requested resource. Finally the web server sends a

response with the HTML code back to the client. The web browser can interpret the

HTML code and displays a web page. This is a basic scenario. It will be more complex

with further programming languages and techniques. [9]

11
 cf. [6] chapter 1.4

12
 cf. [7] chapter 2

13
 cf. [8] page 1

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

21

As mentioned above, many Web Applications use Web Services. These Web Services

are mostly hosted by foreign vendors and achieve different jobs for the Web

Applications.

Today interactive Web Applications are only usable if the client has a permanent

connection to the hosting web server. New developments around HTML5 make

interaction with offline Web Applications possible.
14

 When the network connection of a

user is unavailable, users can continue the interaction with the Web Applications. A

manifest, which contains everything that is needed for the Web Application makes this

possible. This technique shows a new direction for Web Applications as an alternative

for native applications.

The Web Hypertext Application Technology Working Group (WHATWG) and the W3C

have specified many more improvements for the actual HTML version. Along with the

HTML 5 specification, the W3C and WHATWG standardize a lot of further APIs. These

help developers to build more powerful Web Applications. The outstanding

specifications are Web Storage [10], Web Workers [11] and Web Sockets [12]. Web

Storage is an improvement on cookies
15

. For example, it has a greater storage capacity

and better programmatic interfaces. With the help of the Web Worker, a web developer

has the ability to run scripts in the background independently of any user interface

scripts. The Web Sockets API is developed as a part of the HTML5 initiative. It provides

full-duplex
16

 channels via a single Transmission Control Protocol (TCP) socket. It is

14
 cf. [9] chapter 6.6

15
 Cookies are pieces of text, which are stored by a web browser. It is used for certain tasks like

authentication, shopping cart contents or storing site preferences.
16

 Duplex channels allow a bidirectional communication.

network

web browser web server

HTTP request

HTTP response

Web
Application

request
HTML
code

Figure 3: Data flow for a Web Application

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

22

designed to be implemented in web browsers and web servers. CHAPTER 4.5.3.2 - WEB

SOCKETS shows an example, how it could be used in this diploma thesis.

2.1.5 REST

REST is an acronym and stands for Representational State Transfer. Roy Thomas

Fielding introduced this term in his doctoral dissertation ARCHITECTURAL STYLES AND

THE DESIGN OF NETWORK-BASED SOFTWARE ARCHITECTURES in 2000 [13]. He

describes REST as an “architectural style for distributed hypermedia systems”
17

 such as

the WWW (World Wide Web). A REST architecture usually uses web-technologies like

XML and HTTP. A REST architecture which conforms to Fielding described constraints

is referred to as being a RESTful architecture.

Resources form a central concept in a REST architectures. These are data objects with

specific information. The resources can be referenced with a resource identifier. This is

for example the Uniform Resource Identifier (URI). HTTP-requests to a URI, which

represents a REST resource, get a representation of the resources. The standard data

format of the response is the Extensible Markup Language (XML). But it is also common

to provide multiple representations of the same resource. JSON as data format and other

XML-based documents like HTML and Scalable Vector Graphics (SVG) are common.

Also not XML-based files like images and PDFs are possible.

“For example, a resource that represents a circle may accept and return a

representation that specifies a center point and radius, formatted in SVG, but may also

accept and return a representation that specifies any three distinct points along the curve

17
 cf. [11] chapter 5.5

point x
point y
radius

URI: http://server.de/circle/

Representation ResourceIdentifier

Figure 4: REST concept

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

23

(since this also uniquely identifies a circle) as a comma-separated list.”
18

 FIGURE 4

illustrates this example. [14]

Some of the most important constraints, which describe the REST architecture, are the

following:

 Stateless communication: The communication style of a REST architecture is

always stateless. Each client send requests with all required information, so that

the server can process the data and returns a response. Any session state is held in

the client.

 Catchable resources: Each resource in a REST architecture represents an object

from the real world. An identifier for a resource is a unique URI. A client can use

this URI to cache a resource.

 Uniform interface: For all resources is the same uniform interface between client

and server defined. A common RESTful Web Service uses the same verbs as

method names as in the HTTP protocol. A Web Service which uses other

methods can also be RESTful, “because REST doesn’t say what the uniform

interface look like.”
19

 It is not a good practice, because the service is

incompatible with other RESTful services in that case. The four methods, which

are used in this diploma thesis: [15]

o GET: List one or more resources with its URI and perhaps further details

o PUT: Replace a collection of resources or update a single. If the single

resource does not exist, it will be create a new one.

o POST: A new one will be created in a resource collection.

o DELETE: Delete one or more resources.

 Mashups 2.2
This diploma thesis offers no ready-made mashups or an engine for creating mashups.

But it allows a user to make his personal resources available to Web Applications, which

combine the resources with web-based services to a new mashup. Therefore, the

integration of services in mashups is an important topic in this work. It is essential to

understand the subject for creating this <Device Cloud>.

Mashups are known in many domains. It stands for a creation of new content through the

combination of already existing content. In web development, it is an application which

combines data, presentations or functionalities from more than one source. But Mashups

are not limited to web-based artifacts. “A broader world can be mashed up, including

databases, binary formats (such as Excell and PDF)…and more.”
20

 There are certain

benefits of this technique. Application developers get reusable and easy to handle

18
 cf. [14] article “Representational State Transfer“

19
 cf. [15] page 104

20
 cf. [16] page 8-9; chapter “The Birth of Mashups”

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

24

building blocks and the mashup provider offer their data or services to a greater number

of users. In the beginning of the Web 2.0 hype, mashups were one of the key drivers.

Building Web Applications as mashups grew to a standard untill today. [16]

2.2.1 Auto-generated Mashups

In DYNAMIC MASHUP PLATFORM FOR MOBILE WEB APPLICATIONS [17] and A

QOS-ORIENTED MANAGEMENT FRAMEWORK FOR RECONFIGURABLE MOBILE

MASHUP SERVICES [18] the authors describe platforms where Web Services are

combined to mashups. In [17] the user selects his preferred Web Services or a service

category. Afterwards the authoring engine shows the possible list of mashup services

considering the user’s preference. In [18], the approach wants to connect Quality of

Service (QoS) parameters with web-based applications. The five QoS parameters are:

 Response time

 Price

 Reliability

 Availability

 Reputation

Figure 5: QoS-Oriented Mashup Framework [18]

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

25

FIGURE 5 shows the architecture of [18]. The system decides which Web Services are

appropriate for the user. It selects the suitable Web Service with the help of the five QoS

parameters. The user influences the weight of the QoS parameters indirectly via several

feedback channels.

Both approaches combine different devices or services. The platform in [17] confines

oneself to create mashups from a previous user-selected set of Web Services. In contrast

to [17], the systems described in [18] decide, which Web Services will be chosen for a

task. Their decisions depend on the preferred user interests or service properties.

A mashup framework was developed in ONTOLOGY-BASED MULTIDIMENSIONAL

PERSONALIZATION MODELING FOR THE AUTOMATIC GENERATION OF MASHUPS IN

NEXT-GENERATION PORTALS [19], which creates a personalization model with

knowledge about the user and the information about the context the user is acting in (for

example the domain). That is used to create personalized mashups for the user.

FIGURE 6 shows the architecture from this approach. The three orange boxes represent

content and applications from third parties. Below that is the business logic of the portal

from this approach, which provides all necessary information for creating personalized

mashups. The two lower pink boxes present the models. Above is the combination of

Figure 6: Mashup framework from [19]

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

26

them, the Personalization Model. The Application Registry has semantic service

descriptions of the Applications and Services.

The Personalization Engine specifies a composition request with the help of the data

from the Personalization Model. The Service Composition Module receives this request

and builds a Mashup Model which is based on the composition request and the semantic

application description from the Application Registry. The Mashup Handler receives this

Mashup Model and shows the related mashups via the Presentation Module on a portal

page.

 Access Control and Rule Engines 2.3
A rule-based system for access control is one of the objectives in this diploma thesis.

Some approaches which deal with this subject are described in this chapter.

2.3.1 RBAC

RBAC stands for Role Based Access Control and is an approach to restricting system

access to authorized users. RBAC is widely accepted as a best practice for managing user

privileges within a single system or application. It was developed in 1992 by D.R. Kuhn

and D.F. Ferraiolo [20]. Four years later Sandhu et al. present a family of reference

models to simplify the work with RBAC [21]. In 2000 the three published a paper, in

which they described a unified model for RBAC [22]. This model was adopted as an

ANSI/INCITS standard in 2004. Until today NIST supports RBAC research and

standards [23].
 21

The revised RBAC model from 2000 is organized in four levels, which are cumulative in

the case that each includes the requirements of the previous. FIGURE 7 shows the first

level (Flat RBAC). In this simple model a user U has one or more roles R whereat every

role owns multiple permissions P. Permissions allow an access to one or more objects

from the system. One role can be assigned to more than one user. “The requirement that

users acquire permissions through roles is the essence of RBAC.”
22

 The further levels

21
 ANSI, INCITS and NIST are acronyms for several standardization organizations.

22
 cf. [22] page 5

Figure 7: RBAC Level 1

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

27

expand this model with role hierarchy and separation of duties (SoD). The Flat RBAC is

still the same model like the first approach from 1992.

This diploma thesis adopts the Flat RBAC model. The entities user, role and permission

can be found in the same constellation in the database schema. But the Web Applications

take the role as user in this system. Further details to the concept are in CHAPTER 4.3.4.

The realization is described in CHAPTER 5.1.1.1.

2.3.2 X-GTRBAC

Rafae Bhatti et al. developed the X-GTRBAC Model [24], which is based on the

GTRBAC model [25]. GTRBAC stands for Generalized Temporal Role Based Access

Control. GTRBAC is based on TRBAC [26], which is an extension of the famous RBAC

approaches. It allows expressing role hierarchies and SoD constraints for specifying fine-

grained temporal semantics. SoD and role hierarchies are not new for RBAC, but the

fine-grained temporal semantics with them.

In A TRUST-BASED CONTEXT-AWARE ACCESS CONTROL MODEL FOR WEB-SERVICES

[5] they extend this model and create a Context-Aware Access Control Model for Web-

Services. This XML-based approach allows defining a wide range of context-aware rules

and observing these. It also provides a context-aware access control system. This system

checks the user-defined rules for every request and decides, whether it can pass. FIGURE

8 shows the architecture for this approach.

Figure 8: X-GTRBAC architecture [24]

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

28

The extensions from GTRBAC to RBAC are very useful for this diploma thesis, because

of the lack of a rule engine in the RBAC model. With approach [5] there are also context-

aware rules with observer-patterns for these. All the theoretical parts of these approaches

fit in well with this diploma thesis. Specially, the later explained rules with fast-changing

values (location- and time-based) benefit from these concepts. But the implementation

has never reached a status of a well-formed framework. For example, there are no

methods for generating and saving all required entities (user, roles, and complex

permissions). The Java project had no updates since May 2005 and went down during the

writing of the diploma thesis. This makes the implementation unusable for this work.

2.3.3 Java Rule Engine

The Java Specification Request 94 (JSR-94) [27] defines the Java Rules Engine API. The

Java Community Process (JCP) for this JSR started in 2000 and ended with the final

release on 15 September 2003.

The specification defines a lightweight-programming interface to access a business rule

engine from a Java Platform. It constitutes just a standard API for acquiring and using a

rule engine, but not the rule engine itself. The interfaces contain mechanisms for

invoking rule execution sets by runtime clients and for loading rule execution sets from

external resources. The execution sets are usable for runtime clients of a compliant

implementation.

“One of the most common classes of rule engines is the forward-chaining rule engine.

Forward-chaining rule engines implement an execution cycle that allows the action of

one rule to cause the condition of other rules to become met. In this way, a cascade of

rules may become activated and each rule action executed. Forward-chaining rule

engines are suitable for problems that require drawing higher-level conclusions from

simple input facts.”
23

Today a couple of implementations based of the JSR-94 exist. One of them is Drools 5

from JBoss [28], a Business Logic integration Platform. Drools integrates platforms for

Rules, Workflow and Event Processing. The Drools rule engine serves as an example for

23
 cf. [27] page 6; chapter 6.1

rule "Is of valid age"

when

 Applicant(age < 18)

 $a : Application()

then

 $a.setValid(false);

end

Listing 1: Rule style in Drools

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

29

JSR-94 implementations. LISTING 1 shows a simple rule in Drools, which act upon an

input object and produce an output object. Multiple inputs and outputs are also possible.

“Input objects are often referred to as facts and are a representation of the state of the

application domain. Output objects are often referred to as conclusions or inferences

and are grounded by the application into the application domain. The rule engine may

execute actions directly (invoke methods of a class), which affect the application domain,

input objects, the execution cycle, etc.”
24

The syntax of LISTING 1 shows a typically form of business rules – if-then-clauses (in

this case when instead of if). The if portion contains the condition. In the example the

condition is, if the attribute age from object Applicant is lower than 18. The then portion

produces some outputs. These outputs can just be a return value (in this example a

Boolean from the input object) or any kind of method calls which produce side effects.

With business rules you have the ability to separate program code and the rule

description. But the rules are not independent from the program code, because they refer

to the methods in the then portion. The JSR-94 has no specifications for role-based

access controls as in RBAC. This does not belong in a business rule specification and has

to be modeled separately with the rules or outside of the rule chain. A more sophisticated

approach is to use a RBAC implementation and use a set of business rules for the

compliance of SoD and the permissions assigned to a role.

2.3.4 Further approaches

There are many more approaches, which deal with the topic access control. Many access

control approaches are based on the RBAC model. Because there is no general

specification for rule evaluation inside the RBAC model, various approaches present

solutions for this topic. There are also a lot of approaches, which deal with rule engines.

Business rule engines like the Java Rule Engine are only one possibility for making

decisions with rules. The following section presents a little glimpse over the rim of the

proverbial tea cup.

A universal policy model and an access protection framework to secure data space are

described in SECURE DATASPACE WITH ACCESS POLICIES [29]. It provides policy

indexing, parallel searching for policies and resources and building of policy hierarchies.

This makes the framework efficient for a large number of users. Policies are saved as 6-

tuple, whereby the access right can be dependent on many different factors. The approach

does not provide any roles or user-models, because it is designed for data sources with

many rules. But it is not the focus of this diploma thesis because resources aren’t shared

with a lot of users.

24
 cf. [27] page 5; chapter 6.1

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

30

The two mashup frameworks [18] and [19] which are introduced in CHAPTER 2.2.1, use

rules for auto-generating mashups. But the rules are not created by the user. The two

frameworks decide on a base of some inputs, which service or resource may be used for a

certain task. The user can indirectly influence the system’s choice. [18] uses the five of

the user weighted QoS parameters as basis for the choice. [19] combines several models

and semantics to evaluate, which mashups a user wants to see in this point of time.

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

31

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

32

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

33

3 Related Background - Approaches with related objectives
Five projects, which covers one or more from the in CHAPTER 1.2.1 introduced

objectives will described in this section. The last part resumes the projects and indicates

which objectives are covered overall.

 BONDI 3.1
BONDI [30] is a specification for a mobile phone framework. It supports the developer

to use device-specific resources in Web Applications. The project was launched by the

Open Mobile Terminal Platform (OMTP) [31], which transitioned into WAC [3] on 1st

July 2010. WAC integrate the BONDI technology with JIL [32] and GSMA OneAPI [33]

into the Wholesale Applications Community to provide a technology which will enable

Web Applications to be developed regardless of the underlying platform or operation

system. The current WAC membership consists of 54 companies, almost all from the

telecommunication industry.

BONDI provides access to mobile phones’ capabilities over a JavaScript
25

 API.

Widgets
26

 and Web Applications, which run currently on the mobile phone, can use the

BONDI API. A security context with policy safeguards secures the user against

malicious Web Applications. The policies can individual adjust to get the desired level of

security.

BONDI permits the use from device-specific resources via a uniform interface. This

covers partly the in the introduction mentioned objectives one and four.

Objective one claims the enabling from heterogeneous and distributed devices for Web

Applications. BONDI enables resources on heterogeneous but not on distributed devices.

A Web Application can only use the resources on the device, where it currently running.

For sharing the resources from a mobile phone with the help of BONDI, the user has to

run a widget or a Web Application, which enables the resources for a back-end-system

like the <Device Cloud> server from this diploma thesis. This back-end-system shares

the resources with other Web Applications. Because of these possible scenario BONDI is

an important part to achieve one goal of this diploma thesis – the combination of

resources from different devices.

Objective four describes a uniform API for Web Applications to use resources from

heterogeneous devices. This API should be REST. The BONDI specification defines an

API with the same objective. But instead of REST, it is a JavaScript API.

25
 JavaScript is a scripting language, which is primary used for DOM-scripting in web browsers.

26
 Widgets are mostly GUI-based applications, which run inside an engine.

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

34

 Universal Plug and Play 3.2
Universal Plug and Play (UPnP) [4] is a distributed, open networking architecture that

leverages TCP, which uses the Internet Protocol (IP) (short: TCP/IP). Devices which use

the UPnP protocols have the ability to connect seamlessly with the environment. UPnP is

rampant in Home Media Entertainment.

UPnP is vendor-driven. This project was initiated by Microsoft and is now in the hands

of the UPnP Forum. Today, behind this approach stand parties from different directions.

914 member from industry and research support UPnP.
27

The architecture from UPnP based on commonly protocols from the TCP/IP protocol

stack. FIGURE 9 shows the UPnP stack. The yellow shapes are protocols and the green

are extensions for HTTP to fulfill a certain service. The UPnP networking consists of six

services, whereby the last five are exist in the figure as red shapes.

After an UPnP device got an IP address (1: Addressing), UPnP devices and control points

have to find each other in the network (2: Discovery). When a control point finds a

27
 Read on 26.11.2010 from official member list on:

http://upnp.org/membership/upnp-membership-demographics/

IP

UDP TCP

HTTPMU HTTPU
SSDP SSDPGENA HTTP

HTTP
GENA

HTTP
SOAP

Discovery D
es

cr
ip

ti
o

n

C
o

n
tr

o
l

P
re

se
n

ta
ti

o
n

E
ve

n
ti

n
g

Figure 9: UPnP protocol stack with services

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

35

device, it sends a HTTP message to the device and receives a XML file with information

of the device (3: Description). With this information, the control point has the ability to

control the device. The next step is the event notification. A control point may subscribes

on a service to receive information from this. The service publishes to all subscribed

control points. This system prevents polling, where a server request periodic the status of

a client. If a device has a Uniform Resource Locator (URL) for presentation, the user can

load this and get an overview and control mechanism about the services in his web

browser.

The UPnP architecture has several benefits. The user-devices connect with each other

without any setup or interaction from the user. UPnP uses approved and widespread

Internet-based technologies. The UPnP technology runs on many media that support IP

(for example Ethernet and Wi-Fi). Therefore every IP enabled device can connect to an

UPnP environment. It is also possible to extend the protocol stack with a vendor-specific

layer and offer new services.

UPnP covers wholeheartedly the second objective from the five in CHAPTER 1.2.1

defined objectives. It increases interoperability for a looser coupling between the parts of

distributed devices. The UPnP Forum chairs specific technical working committees,

which standardized a set of Device Control Protocols (DCPs).
28

 Control points use these

DCPs for controlling UPnP enabled devices.

UPnP covers also the first objective. It enables services on heterogeneous and distributed

devices for applications. The control point can be an application (web-based and native)

and it is possible for this application to combine multiple devices to a new service.

 Web of Things 3.3
Web of Things (WoT) is a project name of the Distributed Systems Group at the ETH

Zurich. The Web of Things is the vision bringing embedded devices into the web by

using web standards (e.g. HTTP, REST, Atom, JSON, Comet, etc.) as application

protocols to interact with things. The participating researchers for this project are

Dominique Guinard and Vlad Trifa. They published several papers about this topic.

Guinard and Trifa build with their students an infrastructure, which allows an access to

several sensors via REST.

In June 2008 Vlad Trifa published the paper CONTENT CREATION ON THE WEB:

MASHING UP THE REAL WORLD WITH THE INTERNET [7]. He presents a first

architecture design for the Web of Things. He describes theoretical some related topics

and the interaction with his Web of Things architecture. Semantic Web and the used

languages such as the Web Ontology Language (OWL) or Resource Description

28
 The official list of DCPs is available online at the UPnP Forum web site:

http://upnp.org/index.php/sdcps-and-certification/standards/sdcps/

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

36

Framework (RDF) is one of these topics. Their idea is “to adapt the languages”. This is

“useful in the context of ubiquitous computing, in particular to allow autonomous

configuration of devices, and collaboration between them to execute high-level task with

no human intervention”
29

.

Another question is the dynamic discovery of services. Trifa identifies four different

methods for finding appropriate services and marks it as important in his architecture

design. The four methods are:

 Listen to new devices that appear on the network, and "bookmark" them in a

central repository to be reused later

 Search by matching keywords or textual information that describe static metadata

(device type, available sensors)

 Browse through a tree classification based on different criteria and on the

current context (location, hierarchy, etc.)

 Use a search string or query that partially describes both static and dynamic

properties of devices (QoS, available battery life, network connectivity)
30

29
 cf. [7] chapter 2.2

30
 cf. [7] chapter 2.3

Figure 10: High level overview of the Web of Things core [34]

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

37

Trifas student Samuel Wieland developed this project in his master thesis DESIGN AND

IMPLEMENTATION OF A GATEWAY FOR WEB-BASED INTERACTION AND

MANAGEMENT OF EMBEDDED DEVICES [34] in March 2009. Different embedded

devices (e.g. sensors) are abstracted by a Smart Gateway, which enables access directly

from the Web via a REST interface. Different specialized drivers are used to

communicate through their proprietary protocol with the respective physical device. This

is shown in FIGURE 10.

In TOWARDS THE WEB OF THINGS: WEB MASHUPS FOR EMBEDDED DEVICES [35]

and ARCHITECTING A MASHABLE OPEN WORLD WIDE WEB OF THINGS [36]

describes Trifa et al. further details from the developed architecture of the Web of Things

project. They adopt the idea from [7] and take the software architecture style REST for

connect sensors with the web. They identify two methods to enable REST based

interaction with embedded devices. The first is shown in FIGURE 11. It is a web server,

which is implemented directly on the device. This makes the devices as a part of the web.

But not all devices hold enough resources for this approach. Like in FIGURE 12, these

devices are connected through a Smart Gateway.

They implemented the two approaches with the sensors Plogg and Sun SPOT. Ploggs can

measure the electricity consumption of the devices that are plugged into them and

communicate over Bluetooth. So they need a Smart Gateway. The Sun SPOTs got an

embedded web server on each node.

They expand their scenario in [36] with a standardized server-side EPCIS (EPC

Information Service), which is in charge of managing and offering access to track and

trace the Radio-frequency identification (RFID) events.

Figure 11: Devices with Web Server [27]

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

38

In March 2010, the Web of Things group extends the architecture with the Social Access

Controller (SAC) for sharing smart things in social communities [37]. Users can leave

their social networks credentials and generate an access control list of the smart things by

selecting which trusted connections can interact with which resource. Other community

members can use the link to the shared resources. Previously they must authenticate to

SAC with their social network credentials.

The project Web of Things takes the same direction like this diploma thesis. Therefore it

is no surprise that they cover the objectives one till four. The WoT architecture abstracts

the communication with several types of sensors and offers their accessible

functionalities via REST (objective three and four). But the focus of the project lies on

smart things like sensors and this diploma thesis has a wider focus. User devices like

mobile phones, multimedia-components and notebooks are the subject. Though sensors

are not excluded, those stand not in the center of the diploma architecture. In this context

you can see another difference between the two projects. The devices build the center

point in Web of Things and in this diploma thesis, it is the user. Users in WoT can just

connect their devices through the WoT-server and make them web-enabled. But they

have no possibility to restrict the access to these devices. If the devices are enabled to the

worldwide Internet, every user and application can use the devices. For the typical

devices like sensors, this is an acceptable assumption. In contrast to WoT, the user have

in this diploma thesis the decision, who get access to his devices. Ergo WoT does not

cover objective five.

Figure 12: Smart Gateway [27]

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

39

The WoT architecture has the same core principles. It is a goal of WoT to enable services

on heterogeneous and distributed devices for Web Applications (objective one) and it

increases interoperability for a looser coupling between the parts of distributed devices

(objective two).

 SenseWeb and Pachube 3.4
SenseWeb [38] from Microsoft Research and Pachube [39] are two projects with the

same goal - share sensing resources. Both approaches collect actual sensor data and offer

it as Web Service (SenseWeb) or via REST (Pachube). The APIs are free to use for

applications.

The figureheads of the two projects are the same kind of mashup – maps with markers.

FIGURE 13 shows these maps with different kinds of sensors. On the left is a Bing map
31

with markers from SenseWeb and on the right a Google map with Pachube markers. Both

maps have the same function. They show all available sensors and offer additional

information to one of them with a click of a marker.

Both approaches cover the objective one and two from this diploma thesis, because they

enable services on heterogeneous and distributed devices for applications and so they

increase interoperability for a looser coupling between the parts of distributed devices.

31
 Bing map is a web mapping service provided as a part of Microsoft's Bing suite.

Figure 13: Maps with sensor markers from Senseweb and Pachub

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

40

Like WoT, Pachube covers also the objectives three and four, because it use REST for

the abstraction of the sensor devices. In principle achieve the team from Microsoft the

same, but they don’t build on REST.

 Summarizing 3.5

The presented approaches cover one or more objectives from this diploma thesis und

show possible solutions to gain these. All approaches are still working and there are

applications, which build on top of these infrastructures. The presence of such a plurality

from similar approaches shows the actuality of this topic.

All approaches enable services on heterogeneous devices for Web Applications. But the

approaches focused different types of devices. BONDI has only the goal to offer special

device capabilities of mobile phones to applications. In contrast, the goal from UPnP is to

interconnect devices from the Home Entertainment domain. Applications which

connected to an UPnP network have the ability to use services from the UPnP enabled

devices. The last three approaches have all the same goal. They want to collect actual

data from distributed sensors and offer it to a bride community, which mash the data to

new services.

None of these approaches have a user-configurable fine-granular rule-based system for

access control to the offered resources. BONDI has an access control with the definition

of policies, but it is neither fine-granular nor rule-based. The approaches attempt to offer

the abstracted devices to the greatest possible number of potential users (include

applications). And access control does not fit into this concept, because the restricted

access bordering the number of users. The reachable users at UPnP are limited to the

home network. Unless the network admin configures his router, so that the devices are

reachable from outside of the home network.

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

41

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

42

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

43

4 Concept
The following section delineates the solution statement for the in CHAPTER 1.2 described

problem and will covers the targeted objectives. Based on the conclusions from the

reviewed approaches in CHAPTER 3, a concept will be developed in this chapter.

CHAPTER 4.1 gives an introduction with an example user story. This user story will

expand step by step along this chapter. With each enlargement, the concepts which are

necessary to the realization, will explained. CHAPTER 4.2 shows the centralized part of

this diploma thesis – the server. Its main duty is to manage the connection between user

devices and Web Applications. Furthermore, the server fulfills other tasks. The required

server-components for these tasks will also describe in this chapter. To enable access to

resources from user devices, in some cases it is necessary to run an application on the

device. CHAPTER 4.4 covers this topic. All questions about communication will explain

in CHAPTER 4.5.

 User story 4.1
This chapter illustrates the user story. With the help of this story, the use cases and

requirements will be identified.

The protagonist of the user story is Kevin. He is a user of two Web Applications. We call

them Mango+ and Web-App X. Both are map-based community applications, which are

not primarily developed for usage on mobile phones. The Web Applications does not

scale on a small screen. That is why Kevin prefers his Notebook to use the applications.

With Mango+ has Kevin the ability to generate event recommendations. This service

provides the opportunity to sends the event recommendations via SMS. This occurs with

the help of Kevin’s mobile phone. But this service needs an application, which runs on

the mobile phone. Because he wants to use this service, he installs this piece of

proprietary software.

Web-App X offers a similarly service. The Web Application sends funny birthday SMS

and MMS to his friends. Web-App X has same procedure like Mango+ and needs also a

running application on Kevin’s mobile phone.

Now, two applications run on his mobile phone. Both have the same function. They listen

for a request from the Web Application, generate a message (SMS or MMS) and send it

to the given addressee. A third Web Application which integrates mobile phone

capabilities, would end in a new running application on the mobile phone. That is a

situation which not represents the interests of Kevin.

This is the initial situation of Kevin. This diploma thesis has the aim to enhance the

situation for Kevin. An improvement from Kevin’s point of view is described in the

following part.

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

44

Kevin uses still Mango+ and Web-App X, which are now members of <Device Cloud>.

The two Web Applications use Kevin’s personal device resources indirect. They use the

interfaces from <Device Cloud> to get the resources. With <Device Cloud>, Mango+

and Web-App X must not support additional software any more.

But what changes for Kevin?

He uses no longer the mobile phone applications from Mango X and Web-App X to send

SMS via the Web Application. Instead he enrolls at <Device Cloud>. Thereafter he

registers his personal devices at <Device Cloud>. These are his desktop PC and his

mobile phone with an Android
32

 operating system. At last, Kevin creates a relationship

between <Device Cloud> and the two Web Applications. The <Device Cloud> needs

Kevin’s unique identifier from the Web Applications for this relation.

Now he needs only one application for his mobile phone to use the above mentioned

services. Every Web Application, which use <Device Cloud> have now the ability to use

the resources from Kevin’s mobile phone.

32
 Android is a mobile operating system from Google Inc.

registers

registers
devices

creates
relationship to

Web Application

login

SetupSetup

User

<<include>>

<<include>>

Figure 14: Use Case: Setup

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

45

FIGURE 14 illustrates the registration phase from the user. First, the user registers at the

system. After the completed registration, he logs in and registers his devices. The last

step is the declaration of Web Applications, which the user wants to use.

 Server architecture 4.2

To achieve the established goals from the user story, we need a server infrastructure. The

server has to fulfill these four tasks:

1. User interfaces for setup (compare FIGURE 14)

2. Interfaces for Web Applications,

3. Communication between user devices and Web Applications

4. Manage connected user devices

This chapter will explain the server architecture for fulfill these basic functions.

CHAPTER 4.2.1 gives an overview about the whole architecture and the following parts

describe several parts of it.

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

46

4.2.1 System Overview

Presentation Layer

Persistency Layer

Business Layer

Service Layer

Persistence API

Data Treatment

Device
Manager

Device
Register

Service
Library

Connector

Mash SSL
Http-
based

Protocol
Abstract Interfaces for

Web Applications
User

Manager

Web-Interface for User

Bluetooth

Bluetooth

Web Application

Database

Figure 15: <Device Cloud> architecture 1.0

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

47

FIGURE 15 shows the architecture of the <Device Cloud> server. The architecture is

divided in four layers. The division happened according the principles of typically three-

tier architecture. FIGURE 16 shows this architecture. The names of the tiers are not

unitary in the literature. There are some variations. The division in these tiers is also not

unitary. Some authors count the data source to the Data Tier, but other places it outside

of the architecture.

The Data Tier is equivalent to the PERSISTENCY LAYER from this system. The BUSINESS

LAYER has the same function like the Application Tier. The Presentation Tier is divided

in SERVICE LAYER and PRESENTATION LAYER in this work, because the functions of

these are slightly different.

The PERSISTENCY LAYER manages the stored data. THE BUSINESS LAYER contains the

server-side logic. The SERVICE LAYER provides interfaces to access services on user-

devices and the feasibility to connect devices with the server. A web interface for the

interaction between user and server is offered by the PRESENTATION LAYER. Above the

layers are the three groups of actors – the user, his devices in the cloud and the Web

Applications which use this system.

Presentation Tier

Data Tier

Application Tier

Figure 16: 3-Tier Architecture

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

48

4.2.2 Persistence Layer

The PERSISTENCY LAYER is responsible for the data maintenance. A typically realization

for this part is a database. It stores the following data:

 user data, like login name, password and several properties

 pool of supported devices

 pool of supported services

 mapped user devices and their services

 data from Web Application providers

 relationships between users and Web Applications

The server needs the user data for accounting and for a customizable user interface. This

feature is not necessary for the main objectives from this diploma thesis, but it is a basic

building block for future extension. The device and service pools contain all supported

devices and their supported services. Heterogeneous devices need different connection

handling and therefor it is important to have a knowledge base of all supported devices.

This is similar for services. For using services from user devices, it is also important to

know which has the user. Information from all participated Web Applications has to store

too. The reasons are similar like these from the user. Every Web Application needs a

profile for registering and for creating relationships between users and Web Applications.

The PERSISTENCY LAYER just store data for identifying the user devices and their

services. Due to the fact that the server cannot get access to available user resources with

only this information, other parts of the server are needed for execution. The Device

Manager with the Service Library and the Connector are also required.

4.2.3 Business Layer

The presented multitier architecture separates the BUSINESS LAYER from other modules,

such as PERSISTENCY LAYER and the two layers in the upper tier – PRESENTATION

LAYER and SERVICE LAYER. The layer contains the whole server side logic.

The layer contains the Persistence API. The API manages and persists the business

entities, which correspond to the entities in the data source model. All data accesses go

through this API.

Device Manager and Data Treatment are business process objects in the BUSINESS

LAYER. The purpose of the Device Manager is the registration of user devices and the

management of their connection inside the BUSINESS LAYER. A further important task is

the knowledge management of drivers and interfaces for every supported device and their

services.

The Device Manager allocates the Device Register to store connection-parameters from

every device in the database. Users connect their devices to the server through the

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

49

Connector from the SERVICE LAYER and enable the device-specific resources to the

system. These resources are persisted even from the Device Register.

Devices can just establish a connection over the Connector, but it needs more for an

interaction between server and device. Knowledge about the services on the devices is

also required. The Service Library provides this knowledge. It contains drivers and

interfaces for every supported device and service. The heterogeneity of the disposable

devices and the supported services require the Service Library which allows a uniform

access to the services. All service primitives will be mapped on standard REST

operations which gives a differentiation between the service types. A SMS service for

example needs other input values as a camera.

The second business process in the BUSINESS LAYER is the Data Treatment. This part

accepts the requests from the User Manager and from the Abstract Interfaces for Web

Application. The Data Treatment forwards the requests with additional information to

one of the two other parts in the BUSINESS LAYER. Furthermore, it handles the basics on

accounting, user registration and login on server-side.

4.2.4 Presentation Layer

The PRESENTATION LAYER contains the views for the users, who can interact with the

server form these views. The User Manager is the sole implementation in this layer. The

manager sends the requests to the Data Treatment in the BUSINESS LAYER on the server-

side. It handles the basics on accounting, user registration and logins on client-side.

Furthermore, the User Manager provides the registration of web-enabled devices on the

web page. On one hand known services of these devices will be displayed to the user, on

the other hand a user can also define not listed services. The services from the user

devices will be mapped to a uniform interface. Except for adding user devices to the

device cloud, the user selects favored Web Applications and adds them to his profile.

4.2.5 Service Layer

The last layer in this architecture is the SERVICE LAYER. The parts, which are

implemented here, offer interfaces to components outside of the server. There are

Abstract Interfaces for Web Applications and the Connector.

After the server has verified a Web Application, it is possible to ask for resources from

user devices. The Abstract Interfaces for Web Applications is built on a RESTful API.

Every abstracted resource has REST-primitives to interact with them. The REST

interface is one of the objectives from this diploma thesis. Further details are in

CHAPTER 4.5 along the explanations for accessing to user resources.

Users connect their devices to the server through the Connector and enable the device-

specific resources to the system. The server offers several techniques for connecting

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

50

devices. For example mobile devices use a simple TCP/IP Server-Client connection

through an installed application.

A mobile device with an installed implementation of BONDI connects over a registration

on a web-site and don’t need an additional application. It uses the ability of BONDI for

getting access to device specific resources via a JavaScript API.

 Property Framework 4.3
The system, which is described until this stage, covers the objectives from the user story.

Furthermore, four of the five in CHAPTER 1.2.1 mentioned objectives are already

covered at this point. Users add heterogeneous and distributed devices to their personal

device cloud. And Web Applications use the services from these devices (objective one).

Objective two is due to this fact. This increases the interoperability for a looser coupling

between the parts of distributed devices. Because all devices and their services are

abstracted behind a RESTful API, objective three and four are also fulfilled.

So far, this approach differs from the previous discussed approaches Web of Things and

Pachube only in one fact. WoT and Pachube concentrate on sensors and this approach

focus user devices. This includes sensors, but contains much more device classes.

Objective five is still uncovered and the continuation of the user story will show the

necessary of this last missing objective.

As mentioned above, Kevin registers his desktop PC and his mobile phone at <Device

Cloud>. Both devices have a camera, which is also known by <Device Cloud>. The PC

camera is the better one. Mango X has a video chat functionality and Kevin wants to use

this.

If Kevin at home, he wants to use his PC camera for the video chat and at the same time

the mobile phone for the event recommendations from Mango X.

The <Device Cloud> server above offers no possibility to manage this for Kevin. What

he needs is a set of rules to control the access to his resources. In this special case a

priority rule to prefer a camera. This chapter describes and discusses the Property

Framework, which fulfill this task.

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

51

4.3.1 Server architecture extension

Presentation Layer

Persistency Layer

Business Layer

Service Layer

Persistence API

Data Treatment

Device
Manager

Device
Register

Service
Library

Property
Framework

EvaluationDefinition

Connector

Mash SSL
Http-
based

Protocol
Abstract Interfaces for

Web Applications
User

Manager

Web-Interface for User

Bluetooth

Bluetooth

Web Application

Database

Figure 17: <Device Cloud> architecture 1.1

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

52

FIGURE 17 shows the changes at the <Device Cloud> server after the integration of the

Property Framework. There is not only a new component. As a result, there are changes

in every layer. All components with red dashes have changes along the integration of the

Property Framework.

The Property Framework has to store data for the created rules. This is why the

PERSISTENCY LAYER makes available new data container. The Persistence API reacts to

these changes and expands the interface to the data in the PERSISTENCY LAYER.

Users have now the ability to create rules for his devices. To provide this new feature the

User Manager with the Web-Interfaces has to adjust. The Data Treatment has to receive

and handle new requests from the User Manager.

Finally the Abstract Interfaces for Web Applications change too. The protocol for get

access to user resources is slightly different. In contrast to the 1.0 architecture from

FIGURE 15, the Web Applications need an access token for use the resources. Further

details are in CHAPTER 4.5, which describes the communication handling. The Data

Treatment has as well new task to manage.

4.3.2 Rule creation GUI

This chapter shows the Graphical User Interface (GUI) to create rules. We handle this

topic now, because it helps for the general understanding of the next chapters.

FIGURE 18 shows a drawing of the GUI. In the left upper corner, we see a drop-down list

with Camera selected. With the help of this list, the user chooses one of the provided

abstract services. An abstract service could be SMS, Location or Camera. The real user

resources are related to this. We use the term abstract services in the further context in

the described manner.

Figure 18: Rule creation GUI

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

53

In our user story has Kevin two devices with a camera. A Web Application uses one of

Kevin’s cameras via a request for the abstract service Camera. But the Web Application

does not know which one of the two cameras is chosen to fulfill the task.

The shown rules are only related to the abstract service Camera. If the user chooses

another item from this list, the view will display rules related to it.

The tabs show the roles, which the user has been awarded for the Web Applications. The

roles assign to one or more Web Application. Per default, every role contains only one

Web Application. But the user has the ability to combine more Web Applications to one

role. The defined rules are valid for all Web Applications which applied to a role.

Similar to the drop-down list, the rules are only related to the chosen role. If the user

chooses another role, the view will display rules related to it.

The big list in the middle represents the rules. The complete list in the figure contains of

five rule sets (rows). Every rule set has a number of rules and devices which are affected

to these rules (column). The first column Prio is a special rule type. It represents the

priority of the rules. CHAPTER 4.3.5.1 shows us how the Evaluation Engine works with

priority.

The cells present a textual representation of the user generated rules. If the user clicks in

a cell, a menu pops out. This menu offer all supported options from a rule type to

regulate this.

4.3.3 Types of rules

This chapter wants to give the reader a short overview about possible rules. The list is not

complete. We illustrate the presented rule types with our user story.

We already know one required rule type. This is the priority rule from the beginning of

CHAPTER 4.3. With the help of this rule, the user orders his personal resources which are

mapped to the same abstract service. In our user story has Kevin two devices with a

camera and wants to prefer the PC camera. This is shown in FIGURE 18 by rule two and

three. The Property Framework decides with the constructed list of precedence, which

device fulfills the task. If the device with the resource on place one passes all rules in this

row, the Property Framework takes this. Otherwise it looks for the next one.

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

54

LISTING 2 shows a code example for the priority rule. sortedArray is an array of rule

sets. The rule set with the highest priority is ahead (sortedArray[0]) . The for loop

iterates the array. It begins with the first entry. The function eval checks all other rules

for this rule set. Returns the evaluation of this rule set the value true, the program returns

the device, which is related to this rules set. If the function eval returns false, the next

rule set along the defined order will be checked. If no rule set passes the eval function,

the program returns null instead of a device.

Kevin’s add the mobile device from his girlfriend to his profile. Because the mobile

phone contracts are different, he wants that Mango+ and Web-App X send SMS after

18.00 via the mobile device from his girlfriend. Before it, the applications should use his

Android phone.

What Kevin needs, is a time rule. The user has several time criteria to control the access

to his resources. He can adjust a time interval in which a resource is usable from a Web

Application. He can also choose one or more days of the week or a date interval to

restrict the access to his resources.

Kevin use Web-App X everywhere, but he wants to hear the nice music tracks from this

application only at home. He does not want to annoy anybody with the music.

For this case, Kevin needs a localization rule. He declares an area on a map as the

validity area for a resource. The simplest case for doing that is a point with a radius. A

more advanced method is a polygon with an unlimited number of edges.

These three rule types are a good basic for creating rules to control the access to user

resources. Of course there is enough space for more rule types. The Property Framework

is built to handle with any number of rule types. A developer should easily add further

rules to the already exist rule types. The realization part of this diploma thesis shows us

how this works and where lays the boundaries of such an assumption.

//sortedArray is from type Ruleset[]

for (Ruleset rs : sortedArray){

 if(eval(rs)) {

 return rs.getDevice();

 }

}

return null;

Listing 2: Priority Rule Code

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

55

Now we have a set of three basic rules:

 Priority Rule

 Time Rule

 Localization Rule

A weather rule is another possibility to restrict the access. It depends on a weather Web

Service.

4.3.3.1 Rule classes

The rules can be divided in two classes. All rules need an information base to decide, if a

request is allowed or denied. The location of this information base is the divisor of these

groups. One location is clear. All rule types need the previous taken decision. The other

part of the information base is different at the rule types. There are two classes:

 Rules, which use Web Services or server resources

 Rules, which based on user resources

The priority rule and the time rule use server resources. The priority rules need only data

from the data storage to evaluate a request. And the time rule read the system time from

the server. The weather rule uses a Web Service to get the necessary information. All

three rule types belong to the first group. This group is easy to handle.

The second group, where the localization rule type belongs to, raises questions.

Our example localization rule needs a user resource, which returns the current position

from the user. This causes some problems. What is, if no actual online device supports

the needful resource? The most obvious option is to deny the request for this rule. How

we respect the user created rules in this case? Should we evaluate the required rule-sets,

if the server needs the resource for the rule evaluation? We leave these design questions

open.

4.3.4 Realization of RBAC

CHAPTER 2.3.1 introduces in Role Base Access Control, short RBAC. And CHAPTER

2.3.2 shows one of the approaches which extends the RBAC model. This is X-GTRBAC.

The concepts of RBAC and X-GTRBAC influence the design of the Property

Framework.

We find the typically level one RBAC design (compare FIGURE 7) in our schema for the

stored rules. Our Web Applications are the RBAC users and they assigned to certain

roles. FIGURE 19 shows our design. Every Web Application is assigned to at least one

role for every <Device Cloud> user. In contrast to the most other systems, which

implement the RBAC model, we have many more roles than RBAC users. Every role is

assigned to a set of permissions, we call it rule set. The rule set contains of rules and is

assigned to one or more user devices.

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

56

A role is only viewable for the <Device Cloud> user, who has created this one. This user

creates rule sets and assigns them to the role. The user has also the ability to group

RBAC users (our Web Applications) and form a role which is assigned to more than one

user.

The RBAC model is missing a permission handling. The model deals with it like a black

box. The approaches around GTRBAC fill this gap by describing concepts to process

context aware rules. All our rules stand in a context and therefor the found principles are

relevant for this work. But further extension to the flat RBAC model itself has not found

the way in this diploma thesis.

4.3.5 Principles

This chapter discusses four principles of the Property Framework.

4.3.5.1 Rule evaluation

If a Web Application asks for an abstract service from a user, the Evaluation Engine

from the Property Framework has to check the related rules. The evaluation of the rules

decides if the Web Application is authorized to use the abstract service.

Web
Application

Role RuleSet

Rule

UserDeviceUser

n m

1

n

1 n

n

m

1 n

1

n

Figure 19: Design for rules schema

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

57

FIGURE 18 helps us to explain how the Evaluation Engine interprets and processes the

user generated rules. The Web Application Mango+ wants to use the abstract service

Camera in our user story.

Which steps have the Evaluation Engine to make a decision about a request?

At first the Evaluation Engine needs the necessary data. It gets the user generated rules

via the Persistence API. It also gets context-based data from other sources (for example

from a Web Service, a user device or from the system itself). The Evaluation Engine

creates an intern representation of the rule creation GUI with this data.

The next step is to evaluate the rules. The Evaluation Engine has two result types. It

returns a Boolean value for the Web Application (access request) and a device identifier

for the Device Manager. The Device Manager saves the result for further requests to the

same abstract service from the same Web Application. The user pretends the order of rule

evaluation with the priority rule. The rule-set with highest priority (lowest number) is the

first to be evaluated. All rules in the first row will evaluate. If the result of all is true, the

Evaluation Engine returns the identifier of the device from the last column. If the result is

false, the Evaluation Engine goes further with the next row and so on. If the result of all

rows is null, the engine returns false and the Web Application get no access rights to any

user device.

If a row is related to more than one device, the system decides randomly for one of them.

A rule, which the engine evaluate also with every row, is the on-off rule. The engine

checks, if the related devices are online. A row, where all devices are offline, returns

always the value false.

These requirements relates to the following equation. We use the syntax of the Boolean

algebra.

[() () ()]

 [() () ()]

 [() () ()]

 stands for access request and it is TRUE or FALSE. The right part of this equation

represents the evaluated rules. All content inside the square bracket stand for one rule set.

 - are the rule function and - the input values for these functions. The

functions return TRUE or FALSE.

All rules inside the square bracket are connected with (AND). So, all rule functions

have to returns TRUE, so that a rule set is TRUE. The rule sets are connected with

(OR). If any rule set is TRUE, the whole equation returns TRUE.

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

58

4.3.5.2 Granularity

“Granularity is the extent to which a system is broken down into small parts, either the

system itself or its description or observation.”
33

Our system is the Property Framework and we have to discuss how fine-granular it has

to be. We have two granularity dimensions. These are the rules itself and the results of

the rule evaluation.

How fine-granular should be the rules?

This is conditioned by the user. Some users want to regulate every detail and others need

only a coarse survey. The Property Framework provides a default set of rule types with a

lot of options. The user has the ability to add or remove rule types to a list of rule types.

He chooses for every abstract service his personal selections of rule types. So the

granularity depends on the number of rule types and is variable.

How fine-granular should be the results of the rule evaluation?

The second dimension for the granularity is the result of the evaluation. In the previous

chapter, we explained that the result is always one or more devices at success. If the

access request is denied, the result is null.

The device as smallest possible element is in some cases not enough. The next finer

granularity for this result is a service as result type instead of devices. Because it is

possible that a device has two or more resources, which match to the same abstract

service. A Property Framework with coarse-grained results (devices) offers no ability to

include the user resources in the rules. The system has to choose a user resource in this

case. An example illustrate us this:

Kevin has a Notebook with a GPS receiver for localization. The installed Firefox
34

browser supports the W3C Geolocation API [40]. The API calculates the current

position from the device with the help of underlying location information sources such as

IP address, RFID
35

, WiFi
36

 and Bluetooth
37

 Media Access Control (MAC) addresses
38

.

These are two services, which fulfill the same task. Both services are not available

everywhere. The Geolocation API produces unusable results, if there no location

33
 cf. [14] article “Granularity”

34
 Mozilla Firefox is a free and open source web browser descended from the Mozilla Application Suite

and managed by Mozilla Corporation. Online: http://www.mozilla-europe.org/de/firefox/
35

 RFID is a technology for identifying and tracking objects and communicate via electromagnetic waves.
36

 WiFi is a consortium of companies, which certified devices with radio interfaces.
37

 Bluetooth is a proprietary open wireless technology standard for exchanging data over short distances.
38

 A MAC address is a unique identifier assigned to network interfaces for communications on the physical

network segment.

http://www.mozilla-europe.org/de/firefox/

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

59

information sources around. And the GPS receiver works bad inside buildings. Because

of theses deficits, Kevin finds it reasonable to register both services at the <Device

Cloud> server.

This is an individual case and similar cases are not often. Therefor and because we want

to keep down the degree of complexity, the granularity of this result is not such fine.

Devices are the smallest element, which can be returns from the Evaluation Engine.

4.3.5.3 Duration of validity

This chapter discusses how long rules should be valid. In other words, how often the

Evaluation Engine has to check the rules. We call the time between two rule evaluations

scope. We have to optimize two variables, which are related to the scope. These are the

server load and the accuracy of the rules. Server load means the work, which the server

performs at the rule evaluation. The accuracy describes how actual are the data on which

the evaluation results based. Our rules based on context-aware data (for example time

and location). If the server evaluates the rules frequently, the accuracy increase and

decrease in the other case. The server load is proportional to the accuracy. FIGURE 20

shows this proportional. The blue indicate all possible states.

At first, we take the smallest scope. FIGURE 21 marked this point in our diagram. In this

case, the Evaluation Engine checks the rules with every request from a Web Application.

The accuracy of the rules and the server load are on the maximum. If a Web Application

needs always the actual position from a user, this system would produce a high server

load.

0

20

40

60

80

100

Se
rv

e
r

Lo
ad

Accuracy high low high low

Figure 20: Ratio between Server Load and Accuracy

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

60

The other extreme is to evaluate once the rules for every combination between Web

Application and user. This is the biggest scope and FIGURE 21 marks this point on the

line. The server save the result and apply it to the next request. The rules have no more

effect with this procedure. The Property Framework would be degenerate to an ordinary

allocation of Web Applications to user devices. The advantages thereby are obvious. The

server load caused by the Property Framework on a minimum, but also the accuracy of

the rules.

The key lies in the middle of these two extremes. The Evaluation Engine evaluates the

user created rules after an access request to the user resources. The server saves the result

(combination of Web Application, abstract service, user and his device). This result is

valid for one session. The Web Application has not to ask again for the abstract service,

because the Web Application can use it with the returned access token. A session ends

with a new access request from the Web Application. This happens usually, when the

user starts the Web Application again.

This would mean that the Web Application has the access rights for the user resources for

a long time. In this time changed the context on which the evaluated rules based. The

previous taken decision from the Evaluation Engine could be another now and the user

created rules could point to another device with the actual context. But the Web

Applications still use the old device. To prevent this, the system has to evaluate the rules

after a certain time constant.

We choose a time interval of 15 minutes. This time is arbitrary and based on no web

analytic case studies. Web Applications are very different and the average session time

0

20

40

60

80

100
Se

rv
e

r
Lo

ad

Accuracy high low

smallest scope

biggest scope

Figure 21: Server Load - Accuracy ratio with marked points.

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

61

varies widely. A further improvement is a dynamic time interval. This interval based on

the actual server load. The time interval rises, if the server load also rises. The server re-

defines the time interval after every rule evaluation.

Except for the time interval (constant or dynamic), there has to be other timer for

checking the rules. A new connected user device is such a timer. This reduces also the

scope and a smaller scope is preferable.

4.3.5.4 Default rule set

This chapter describes three constraints for a default rule set.

If a user defines new rules for an abstract service, he has to define ever a complete rule

set. This equates a new row in the rule creation GUI (cf. FIGURE 18).

 The untouched rules in this newly added rule set are extensive. It means, that the rules

allow everything per default. A new rule set in our GUI has the attributes:

 Time Rule: ever

 Location Rule: everywhere

 Weather Rule: every weather

 Devices: all

The user can now adjust the rules which he wants. With a restrictive rule set, the user is

forced to change every rule, because every rule from the default rule-set set the

evaluation to false.

The last constraint requires the existent from only affirmative rules. There are no

negative rules (for example the Time Rule with never Wednesday). Negative rules make

it unnecessarily complicate for users to read the created rules.

 User devices 4.4
The purpose of this diploma thesis is to offer resources from user devices to Web

Applications. Therefore, we have a look at the devices.

4.4.1 Register user devices

Before a Web Application can use resources from a device, the user have to register this

device at the <Device Cloud> server. The server provides a GUI for doing this. In a

second step, the GUI shows the related resources to this device. The user marks the

resources, which he wants to offer.

The services from the user devices will be mapped to a uniform interface. Objective three

says: Make services on devices available as REST resources. And this is what we do. All

user services are accessible via a RESTful API. The Data Treatment implements this

API. The API abstracts the real services and offers these as REST resources. A Web

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

62

Application, which uses a resource, does not know the real executing service and the

operating device.

4.4.2 Connect a user device to the server

Register the user devices is only one side of the coin, connect it to the server the other.

There are different ways to connect a device with the server. The Connector has to offer

these. The more common way is the connection over a web site. The user logs in with his

device via this site. The server can now use the resources from this device. The other way

is via an installed application. This application connects to the <Device Cloud> server

and offers the resources.

Both ways have advantages and it depends on the device class, which is the better one.

The log-in via the web site has the advantage, that the user device needs only a web

browser. No further software is required.

But an installed application to communicate with the server is for some device classes the

better choice. Devices like sensors have per default no web browser. The Connector has

to speak with them via proprietary interfaces and protocols. If there is a possibility to

install further software on the sensor, it would be a server (cf. Web of Things from

CHAPTER 3.3).

A native application makes also sense for next generation mobile phones. Devices with

Iphone OS
39

, Google Android and Windows Mobile 7
40

 are for example next generation

mobile phones. Users with these devices are accustomed to use so-called Apps.

The user loads the App from a portal. The App Store for IPhone and the Android Market

for Android are the two biggest. After the download, the user installs the App and uses it.

This is a usual practice for modern mobile phones. But Apple even takes another step

ahead and offers the Apps also for the IPad, a tablet computer. In the near future, Apple

will offer the Mac App Store. It is similar to the App Store, but it has Apps designed for

other devices like notebooks and PCs with MacOS
41

 as operating system [41].

The App has the advantage over a connection via a web site of running in the

background. In contrast, the user has to choose the web site for web connection in the

web browser and it runs in the foreground. A Framework like BONDI, is a requirement

for both solutions. The functions from this framework can be call via a native application

and via an application running in the web browser.

39
 Iphone OS is Apple's mobile operating system for iPhone, iPod Touch, iPad and Apple TV.

40
 Windows Mobile 7 is a mobile operating system from Microsoft.

41
 MacOS is an operating system from Apple Inc.

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

63

 Communication 4.5
The chapter describes the basics behind a resource access request from a Web

Application. The description bases upon the previous styled architecture. In this chapter,

we use the term client as synonym for the application on the user device, which is

connected to the server. We distinguish between three phases:

 access request phase

 connection establishment phase

 communication phase

The access request phase is explained in CHAPTER 4.5.2 and the others are explained in

CHAPTER 4.5.3 along the presentation of the communication methods. These two phases

are depending on these methods.

4.5.1 Abstract Interfaces for Web Applications

The Abstract Interfaces for Web Applications follows the REST design principles. Web

Applications asks for access to user resources via these interfaces. If Web Applications

also handle their connection to the user via these interfaces, discuss the chapters 4.5.3

and 4.5.4.

The name abstract interfaces refer to abstract services, which was introduced in chapter

4.3.2. A Web application has only the ability to call for these abstract services and not

for specific user resources. Identified abstract services are:

 Localization

 SMS

 MMS

 Video-Stream

 Audio-Stream

 Picture

 Camera

 Microphone

This list is not complete. Video-Stream and Audio-Stream stands for a data-stream from

the Web Application to the user. The terms Camera and Microphone are used for the

other direction.

A RESTfull implementation should be very flexible with the data-types. It should

provide different formats as input parameters, typically JSON and XML. The returned

data should be also flexible. It is commonly, that the client (in our case the Web

Application) chooses the return parameter via the Accept header of the HTTP message. If

the client sends data, he uses the Content-Type header to indicate the data in the message

body.

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

64

The Abstract Interfaces for Web Applications have the following design:

URI: {<Device Cloud> URI}/{resource}/{user}

The URI consists of three patterns. The first is {<Device Cloud> URI}. This is just the

base URI from the <Device Cloud> server. The second pattern is {resource}. This is one

of our provided abstract services. The list above shows them. {user} stands on the end of

the URI. It is the user identifier, which is used from the Web Application. This value is

mapped to the <Device Cloud> user id. The user has to adjust during the selection of his

preferred Web Applications. Let us have a look at our user story to illustrate this.

We assume that our server has the base URI http://www.<Device Cloud>.de . Mango+, the

Web Application from our user story wanted to use Kevin’s camera. Kevin’s user

identifier at Mango+ is Kevin_4. To ask for access rights to Kevin’s camera, Mango has

to call the URI http://www.<Device Cloud>.de/Camera/Kevin_4 . The server knows that Kevin_4

from Mango+ is the user Kevin from <Device Cloud>. The Property Framework

evaluates the rules for Kevin and the server return an answer based on this result to

Mango+.

4.5.2 Access rights

This chapter describes the necessary steps for the server to decide, if a Web Application

gets access rights to a user resource.

FIGURE 22 shows an activity diagram, which represent the workflow of an access

request. The workflow begins with an incoming access request at the server. The request

was send by a Web Application. With this request, the Web Application detects, if a user

permits the use of a certain service for this application. The Data Treatment receives this

REST request on server-side. If the called URI complies with the specified interface from

CHAPTER 4.5.1, the Data Treatment maps the given user identifier to the server intern

identifier. If the given user identifier is not known by the server, the Date Treatment

sends a response with access denied.

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

65

In the case, that the user id is valid, the Data Treatment calls the evaluate method at the

Property Framework. If the method returns false, the server sends an access denied

response to the Web Application. In the other case, the Data Treatment generates an

access token, which is valid for a limited period of time. This token authorized the Web

Application to use a specific resource from the user. The Web Application does not know

which, because this specific resource is hidden behind an abstract interface. The Data

Treatment sends the token within an access granted response to the Web Application and

if necessary also to the addressed user device. The form of the access granted response is

shown in LISTING 3.

Incomming
Access Request

id is invalid id is valid

Property
Framework
checks rules

Data Treatment
checks user id

Server sends
Access Request

denied

Server sends
Access Request

granted and
Access Token

Data Treatment
generates Acces

Token

Server send
client the Access

Token

returns false returns true

Figure 22: Activity diagram: Access Request

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

66

Mango+ our Web Application from the user story wants Kevin’s location to show his

position on the map. So it has to ask for access to this resource. FIGURE 23 presents the

interaction between the involved parties. The Web Application uses the offered REST

resource to ask for an abstract service. The Data Treatment is the server-side component,

which handle this request. It let the Property Framework checks the related rules and

gets an identifier from a user device back. The Data Treatment makes a session with this

id, the abstract service Localization, the access token and the related Web Application

Mango+. The server sends an access granted response to Mango+. The Web Application

has now the feasibility to use the resource.

4.5.3 Presentation of communication methods

The previous chapter described how a Web Application gets access rights for a certain

user resource. But there was still no communication between Web Application and a user

device. This chapter illustrates several communication methods. It presents the

communication itself and the establishment of this communication.

We differentiate between three communication styles:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<access>

<access-permission>granted</access-permission>

<access-token>abcd1234</access-token>

</access>

Listing 3: Access granted response

Server

Property
Framework

Web Application

Date Treatment

1:ask for access
to resource

4:access granted

2:evaluate rule
REST resource

3:return id from device

Figure 23: Component view: Access Request

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

67

1) The Web Application sends a request via an interface to the <Device Cloud>

server. The server forwards the request to the appropriate user device. The device

processes the request and if necessary it sends a response back to the server. The

server forwards it to the Web Application.

2) After the Web Application got the access rights, the server initiates a connection

between Web Application and client. The two entities speak direct without a

server in the middle.

3) Like at the second style, the server establish a connection between client and Web

Application. But instead of a duplex channel, there is only a simplex
42

. The Web

Application sends requests directly to the client, but the response takes the way

through the server. The other direction is also possible. The Web Application

sends the requests via the server to the client and gets the responses directly from

it.

All three styles have advantages and disadvantages. The advantage from the first

communication style is simplicity for the Web Application. The Connector abstract all

devices and the Web Application needs only the REST interface to communicate with

user devices. The prize for this is the high server load. All data go through the server and

it has to manage several connection states.

The second style has also advantages. The server load is lower than in the first

communication style, because the data does not pass the server. The <Device Cloud>

server has to establish only the connection between Web Application and user device.

But the Web Application has to deal with different kinds of communication for the

heterogeneous devices. There is no part, which abstract this.

The third communication style is a mix of one and two. It unifies the advantages and

disadvantages in one style. Depending in which direction is the data flow, there are more

pros than cons or not.

The next chapters present concrete technical solutions for the three communication

styles.

4.5.3.1 Communication style one

One communication method, which match communication style one, is presented in this

chapter.

42
 Simplex channels allow only a unidirectional communication.

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

68

REST request and response via server

In this communication method, the Web Applications uss only REST. They send the

REST request to the server and get a REST response. The underlying communication is

fully abstracted for the Web Application. This matches exactly objective four from

CHAPTER 1.2.1.

FIGURE 24 shows this communication style. There are a Web Application, a server and a

user device. The user device is connected via the Connector with the server. The

Connector abstracts the specific underlying interfaces and protocols for other server

components. The Web Application needs no persistent connection, because REST does

not assume it. We use our user story to explain this drawing.

Mango+, our Web Application from the user story, has already an access token for the

abstracted service Localization. Mango+ wants to use this resource now. It sends a GET

request with the access token to the specified REST interface (http://www.<Device

Cloud>.de/Localization/Kevin_4?access-token=1234ABCD). The Data Treatment holds an actual

session where the given parameters match. It requests Kevin’s location at the Device

Manager. This component uses the Connector to fulfill the task on the user device (in this

case Kevin’s mobile phone). The answer finds the way back to the REST interface, which

sends Mango+ a response with expected data.

Server

Device
Manager

Web Application

Data Treatment

1:get resource

Service
Library

6:send response

Connector

REST resource 2:ask for resource

3:forward request

4:send resource data

5:send resource data

Figure 24: Communication: REST via server

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

69

4.5.3.2 Communication style two

At communication style two, which is shown in FIGURE 25, is the Web Application

connected direct with the user device. This chapter presents two communication methods

which fit to this style.

REST with redirect

To support this communication method, the user device needs the ability to receive and

process REST requests. To comply with these requirements, a web server has to run on

the client device. The Web of Things project works with sensors, on which a web server

runs.

The Web Application in FIGURE 25 starts an access request. Till step three, this is the

same like described in CHAPTER 4.5.2, but the access granted response is different. The

server sends additional information to the Web Application. The application gets a new

REST base URI. This is the URI from the REST-enabled web server, which runs on the

user device. Simultaneous gets the related user device the generated access token.

Additional, the device gets information which sender is permitted to use a certain

resources with this token.

Server

Property
Framework

Web Application

Business logic

1:ask for access
to resource

4:access granted

2:evaluate rule

REST resource

3:return id from device

Device
Manager

Service
Library

Connector

5: establish connection

4:transmit connection
details

6:establish connection

Figure 25: Communication style two

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

70

After this connection establishment phase, the Web Application uses the REST interface

from the user device.

Web Sockets

Along the description of Web Applications in CHAPTER 2.1.4, Web Sockets are already

introduced. For this communication method, user device (commonly the web browser on

the device) and the web server from the Web Application have to support Web Sockets.

The operational sequence is the same like in the previous communication method REST.

The differences are in the detail. In step five creates the client a Web Socket with a

specified URI. The server knows the URI and sends the Web Application in step four the

URI of the Web Socket instead a REST URI. The Web Application calls the URI and

establishes a full-duplex communication with the client for any kind of data.

4.5.3.3 Communication style three

Communication style three has two alternatives. This chapter presents for both

alternatives a communication method.

REST request over server and response over client

We assume that the Web Application has already the permission to access a specific user

resource. In this case, the application sent further connection information with the access

request. This could be a listen servlet. The server forwards theses information to the

client at the connection establishment phase.

If the Web Application wants to use the resource from the user device, it has to sends a

request to the specified REST interface from the server. This is step one in FIGURE 26.

In the next step, the server sends a response to the Web Application and forwards the

request to the user device. The client processes the request. If the Web Application

expects a response, the client sends it directly to the previous submitted connection point

from the Web Application.

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

71

HTML5: Server-Sent Events

Also for this communication method, the Web Application sends further information

with the access request. If the access is permitted, the server forwards this information to

the user device. In this case, the user device receives an address for a server resource,

which works as an Eventsource object. This workflow is illustrated in FIGURE 27.

Server-Sent Events EventSource API is a feature from HTML 5 [42]. It specifies a

simplex server-client connection, where the server pushes active new messages. The

client listens to this server resource, which could be a PHP script
43

. If the script sends a

message, the client receives it and can process it. We explain this communication method

along our user story.

43
 PHP is a scripting language for designing web Applications and dynamic web pages.

4:send resource data

Server

Web Application

Data Treatment

1:get resource

2:send response

REST resource

2:ask for resource

3:forward request

Device
Manager

Service
Library

Connector

Figure 26: Communication style three: client pushes

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

72

LISTING 4 shows an example for a client source code, which subscribed to the script

sendPicture.php from our example Web Application Mango+. The script sends a URI

for an image. The subscribed client receives this URI and calls the method showPicture

with the received data as argument. This method shows the picture from our user Kevin.

4.5.4 Analysis of communication methods

The previous chapter shows us five communication methods. This chapter discusses

these methods. FIGURE 28 shows a table with all five communication methods and five

quality criteria for rating these methods. Our rating scale is pretty simple. The scale starts

at -- and ends at ++, where -- is the lowest result.

The five quality criteria are:

1. Complexity for connection establishment

Server

Property
Framework

Web Application

Data Treatment

1:ask for access
to resource

4:access granted

2:evaluate rule

REST resource

3:return id from device

Device
Manager

Service
Library

Connector

5: establish connection

4:transmit connection
details

6: subscribe to source /
7: receive data

var source = new EventSource('www.Mango_plus.de/sendPicture.php');

source.onmessage = function (event) {

 showPicture(event.data);

};

Figure 27: Communication style three: Web Application pushes

Listing 4: EventSource

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

73

2. Required server features

3. Requirements for clients

4. Server load at communication (get/post)

5. Spread of tech

Communication method rating

Communication-Style Complexity of
connection

establishment

Required
server

features

Requirements
for clients

Server load at
communication

(get/post)

Spread
of

tech

REST via server ++ ++ ++ --/-- ++

REST with redirect + ++ -- ++/++ ++

Web Sockets -- - - ++/++ +

REST-req/non REST-
res

- + + +/-- -

EventSource - - - -/++ +

With the first criterion, we rate the connection establishment phase. How many steps

need the server to establish a connection between Web Application and client? The

second and third criteria rate the requirements for the user device and the web server,

where the Web Application runs. We rate high requirements low. The fourth criterion

rates the server load at a GET request and at a POST request from the Web Application

to the client. And the last criterion rates the spread of the used techniques. It is also a

view in the future. What say actual trends about the future of these communication

methods?

Our first communication method REST via server has no connection establishment phase.

After the access request phase, the Web Application can instantly sends a new request to

the specified REST interface and receives the response from it. The server has to check

only, if the access token is still valid. Therefore, this method gets the highest rating, a ++

in column one. At REST with redirect, the Web Application needs a new URI address

and the server has to inform the client about the newly granted permission of the Web

Application to use a resource. This is not as good as the first method. The other three

communication methods imply still more information on Web Application- and client-

side. So, these methods are rated with - or – in the first column.

The two REST methods require for the Web Application only the ability to call a URI

and to receive the response. This is a well-known process and every modern Web

Application should master this. So, we give them ++. For the fourth communication

method, we named no specific technique. Which technology the Web Application ever

Figure 28: Comparison of communication methods

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

74

uses, in the most cases there is still a possibility to receive messages. This method get a

+. Web Sockets and Server-Sent Events are still in the specification phase from the W3C.

There are web server and web browser, which support these techniques, but it is not

common now.

REST via server has no requirements for a client, because the client communicates with

the server and needs no special technique for a connection to a Web Application. The

second communication method requires a running server on the client. This server has to

receive REST requests from Web Applications. This is a high assumption. The most user

devices have no server. Web Sockets and Server-sent Events require a web browser,

which support these techniques. There are some browser engines (for example

WebKit
44

), which support these techniques, but it is not common now. The two most

widely used web browsers, Firefox and Internet Explorer
45

, have no support in their

stable releases for these techniques.

The rating for our fourth criterion Server load at communication is based on the

presentation of these communication methods from the previous chapter. The ratings

should be clear with these explanations.

The last criterion is the spread of the techniques behind the communication methods.

REST based on the HTTP protocol, which is one of the basic protocols in the World

Wide Web. The REST architecture style is ten years old and widespread. Therefore, the

two REST communication methods get a ++. Web Sockets and Sever-Sent Events are

becoming increasingly popular. That is a + for them. The third communication method is

not common today and there is no reason, why it should be in the future. Other

techniques are more attractive.

Summarizing of the rating

We rated all our five communication methods. What is now the best method for our

objectives? The both methods which represent the communication style three are clearly

not suited. They have the fewest plus points.

The both REST methods earned the most plus-points. They based on widespread and

well proven technologies. But both have a deficit. REST via server is an example for

communication style one, where the complete traffic goes through the server. This

increases enormous the server load. REST with redirect solves this problem with a

redirection from the traffic directly to the client. But this requires a running web server

on the user device. This is an assumption, which does not fit for all device classes.

44
 WebKit is a free HTML rendering engine. It is used in the third and fourth most widely used web

browsers, Google Chrome and Apple's Safari.
45

 Internet Explorer is a web browser from Microsoft.

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

75

Web Sockets and REST with redirect are booth communication style two methods. Both

do not route the traffic through the server. But Web Sockets are a technique, which is still

in its infancy. In the near future, we will choose Web Sockets for our purpose, but today

there are the REST-based communication methods. The <Device Cloud> server will

provide both methods. The server prefers the REST with redirect communication method

and chooses REST via server as fallback.

 Conclusion 4.6
What have we done in this chapter? In the first part we had a look on an example

scenario. This was presented through a user story. Afterwards we designed an

architecture, which achieves the established goals from the user story. This architecture

matched with four of our five objectives from CHAPTER 1.2.1. The fifth objective is a

user-configurable rule-based system for control access to services. We introduce such a

system in CHAPTER 4.3 and called it Property Framework. After we had our architecture

complete, we concentrate on the core principle of our work – the communication.

Therefore we introduce the user devices and respond the questions: How can user register

his devices and how connect they these? The last part discusses the communication in

detail. We designed an interface for Web Applications and described how they get

permissions to access user devices. This is followed by a presentation of possible

communication methods, which we divided in three classes of communication styles. In

the end we compare these methods and found out, that the two REST-based are most

suitability for our work.

Therefore we have created a system, which virtualize resources from certain user

devices. Web Applications have the ability to use these resources and build powerful

mashups with them. The offered Abstract Interfaces for Web Applications meet the

standard of actual Web Service APIs.

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

76

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

77

5 Realization
For proofing our concept, we have to implement the previous designed server. This

chapter presents the <Device Cloud> server.

 Server 5.1
FIGURE 29 shows an overview about the implemented server architecture. The general

structure is like the designed architecture from the concept part. We have the same layers

and nearly the same segmentation of logical components. Only the Device Manager is

missing. The parts of this component (Device Register and Service Library) can be found

in other components. The BUSINESS LAYER represents the core of this server

architecture. It contains five components:

 Persistence API

 Property Framework

 SessionBeans

 Connectors

 UserInterface

The first two can also be found in the designed architecture from the concept. The duties

from the Data Treatment are spread across the other three components. The Connectors

contain the implementation for the REST interfaces and for the connection management.

The UserInterface contains the complete GUI for the user. The SessionBeans

containsalso parts from the Data Treatment. A detailed description of these five

components followed in CHAPTER 5.1.2.

The two upper layers contain no implementation. There are just logical components.

They define the interfaces for other parties, which are realized in the server-side counter

parts inside the BUSINESS LAYER.

The PERSISTENCY LAYER stored the necessary data from the BUSINESS LAYER

components in a database. CHAPTER 5.1.1 contains a detailed description of this layer.

There is a strict hierarchy in the architecture. Third parties like Web Applications, users

and their devices use elements on the GUI or the interfaces, which are in the two upper

layers – PRESENTATION LAYER and SERVICE LAYER. These layers communicate only

with the BUSINESS LAYER. The lowest layer, the PERSISTENCY LAYER, is only reachable

from the BUSINESS LAYER. This is up to the marks of the concept.

The BUSINESS LAYER is restructured. There is also a hierarchy inside the layer.

Connectors and UserInterface are on the top. The UserInterface has access to the

functions from the Property Framework. All three can use the SessionBeans, which have

exclusive access to the Persistence API. This API offers the access to the underlying

database. The project structure, which is shown in FIGURE 32 clarify this hierarchy.

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

78

Persistency Layer

Business Layer

Presentation Layer Service Layer

Persistence API

UserInterface

JavaServer Faces Services

SessionBeans

Device
Register

Property
Framework

EvaluationDefinition

Connector

Mash SSL
Http-
based

Protocol

Abstract Interfaces for
Web Applications

User
Manager

Web-Interface for User

Bluetooth

Bluetooth

Web Application

Database

Accounting

Session
Bean Z

Session
Bean Y

Session
Bean X

Connectors

Service
Library

PF
Access

RESTful Services

Session
Bean Z

Session
Bean Y

Managed
Bean X

Session
Bean Z

Session
Bean Y
REST

Service X

Entity Beans

Entity Facades

Entity A Entity B Entity C Entity D

Facade A Facade B Facade C Facade D

persistence.xml

faces-
config.xml

web.xml

web.xml

JavaServer Faces Services

Session
Bean Z

Session
Bean Y

Managed
Bean Xfaces-

config.xml

Figure 29: Implementation view of the server architecture

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

79

5.1.1 Persistency Layer

The PERSISTENCY LAYER stores all necessary data to fulfill the tasks from the concept.

We used a MySQL 5.1 database for the PERSISTENCY LAYER. But this database can be

replaced with any Relational Database Management System (RDBMS), because the

Persistence API on server-side needs only a suitable driver and all necessary data for the

database-connection. So, this layer is completely abstracted from the server. This is a

common style in enterprise architectures. The database schema is written in common

SQL and is compatible to the most relational databases.

The database stores data for accounting and for mapping the devices and their services

from a user. The Property Framework uses the database for saving rules, which users

defined. It reads data records for evaluate these rules.

FIGURE 30 shows the complete database schema. The colored boxes around the tables in

this schema group tables which belong to a specific task. There are tables for:

 Accounting (orange)

 Properties for Web Application (yellow)

 User properties (blue)

 User devices and their services (green)

 Device and service pool (red)

 Rules (purple)

Accounting, user and Web Application are self-explanatory. Web Applications and users

use booth the accounting tables. The GroupTable indicates if the entry in the UserTable

is related to a Web Application or a user. The pools contain information about all devices

and their related services, which are supported from the <Device Cloud> server. The

purple tables, which are used by the Property Framework, will be explained in detail.

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

80

Figure 30: Database schema

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

81

5.1.1.1 Property Framework

The schema in FIGURE 31 is a part from the whole database schema. It contains all

tables, which are belongs to the Property Framework. The six outgoing relations are

marked with their target. Two from the nine tables are only for mapping. This is the way

in a relational database to model a n:m relation.

The tables RuleTable and RuleParameter are used for store a rule (for example a

TimeRule). The column RuleName in RuleTable names the rule type. Every rule type

has one or more parameters, which are stored in RuleParameter. For example, the

TimeRule has a startTime and endTime, which describe a time interval.

Role, RuleSet and the both tables for storing rules match the specification from CHAPTER

4.3.4. All elements from FIGURE 19 can be found in the database schema. This is a one

to one matching from the concept. Only the element for saving the concrete rules is split

into two tables.

The three tables User_choose_Rules, RuleType and DefaultRuleParameter have no

specification in the concept. These fulfill a task for the implementation. RuleType lists all

Figure 31: Database schema from Property Framework

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

82

available rule types, which the server supported. DefaultRuleParameter allocate every

rule parameter from a rule type a default parameter. This default parameter is a value,

which makes no restriction for the rule. For example, our startTime and endTime

values from the TimeRule are 00:00 and 23:59. This match the principle from CHAPTER

4.3.5.4, that every default rule set should be extensive per default. There are no

restrictions, if the user changes nothing.

 With User_choose_Rules, the user has the ability to choose his preferred rule types for

an abstract service. If he needs the WeatherRule for the abstract service SMS, he can add

this rule.

5.1.2 Business Layer

The Business Layer represents the server implementation. The server is implemented

with Java Enterprise Edition 6 (Java EE 6) and runs on a GlassFish v3 server. The

concepts of Enterprise Java Beans 3.0 (EJB 3.0) are used in the whole server

implementation. The server uses different kinds of EJBs. The implementations use also

the security mechanism from GlassFish.

- DeviceCloud

- Connectors

- Property
Framework

- SessionBeans

- Persistence

- UserInterface

- include

Figure 32: Project structure

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

83

To reduce the complexity, the server was divided into smaller projects. FIGURE 32

shows these projects and their dependencies. Every business component from FIGURE 29

got its own project.

5.1.2.1 Persistence API

The BUSINESS LAYER contains the Persistence API. The API manages and persists the

business entities, which correspond to the entities in the database model. All accesses to

the database go through this sub layer. The Java Persistence API (JPA) is the heart of this

layer. It uses the persistence.xml to connect the server with the database and manage all

database transactions.

The Persistence API contains Enterprise JavaBeans 3.0. There is for every table (except

of mapping tables) an Entity Bean. Entity Beans is a type of JavaBeans. The Entity Beans

are used as container for the data of the related tables. These beans are used from every

component in the Business Layer.

For every Entity Bean exists a Session Bean. We call them facades. These Session Beans

provide functions to operate on the data of an Entity Bean. This contains operations to

add or manipulate data from the database. The AbstractFacade contains general

functions. The other facades extend this. FIGURE 33 shows the interface of the

AbstractFacade.

FIGURE 34 lists all Entity Beans and their related Session Beans.

Figure 33: Class diagram from the AbstractFacade

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

84

5.1.2.2 SessionBeans

The project SessionBeans contains only Session Beans. These beans interact with the

facades from the Persistence API. But these beans work on a higher level. They do not

interact with the database. All beans are stateless. This means, that these beans have no

state, which is associated with them.

Figure 34: Class diagram from the Persistency API

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

85

FIGURE 35 shows the content of the package de.fhg.fokus.dc.session. It contains all

the Session Beans and the package util, which contains an implementation of a MD5

hash generator. This is originally written by Santeri Paavolainen, Helsinki Finland in

1996. Timothy W. Macinta made many changes between 2002 and 2010. We prefer this

algorithm to the default from Java, because tests have shown, that this one is much faster.

5.1.2.3 Property Framework

The Property Framework is a user-configurable rule-based system. The device-owner

decides how the approved resources are usable by other parties. With this set of rules,

users have flexibility in dealing with their own devices and the enabling of resources.

The Property Framework has two packages.

If a Web Application requests for permission to access resources from user devices, the

Property Framework has to evaluate the related rules. The Property Framework has an

evaluation engine, which offers this functionality. The RuleEvaluator and all other

classes of the package de.fhg.fokus.dc.propertyframework.evaluate are necessary for

the evaluation. The RuleEvaluator manages the rule evaluation.

Every rule type has its own class. The rule type classes implement the interface ARule.

These classes contain functions for evaluate the rules of a specific rule type. If we want

to add a new rule type to the system, the author from the new rule type has to write a

class which implements the interface ARule. The second step is to add the name, all

available parameters and their default values from the rule type to the list in the database.

There is a property definer inside the Property Framework. The default parameters can

be added to the database with this property definer. The last step is to add a JavaScript

which contains a user view for manipulating rules from this rule type.

Figure 35: Class diagram from the SessionBeans

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

86

The second package is the de.fhg.fokus.dc.propertyframework.definition. There are

definers for rules, default rule properties and roles. With these definers, the UserInterface

has the ability to store new rules or shows already created rules. The RuleEntity, which

is also in the package, is a container for the view. It contains all necessary variables to

show the rules on the GUI.

The UML class diagram from FIGURE 36 shows the structure of the Property

Framework.

5.1.2.4 UserInterface

The UserInterface contains the views for the users, who can interact with the server

through these views. It handles the basics on accounting, user registration and logins on

client-side. Except for adding user devices to the device cloud, the user selects favored

Web Applications and adds them to his profile. After that he creates rules for his services

and the preferred Web Applications through an intuitive graphical interface.

The UserInterface is build with JavaServer Faces 2.0 (JSF 2.0). It is a Java-based Web

Application framework intended to simplify development integration of web-based user

interfaces. JSF uses the architectural pattern Model-View-Controller (MVC). This pattern

describes a separation of concerns.

Figure 36: Class diagram from the Property Framework

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

87

The UserInterface implements a strict version of this pattern. All views are xhtml files,

which contain only UI elements. The used text patterns from the views are swapped to

certain property files. These property files and the Localization features of JSF make a

Multilanguage web page possible. The shown language depends on the browser settings.

FIGURE 37 shows all xhtml files from the UserInterface. This figure is the overview of

the JSF navigation handler. It based on the faces-config.xml. The handler navigates to a

new view, if a Java method, HTML link or button returns a String, which is identical

with one of the labels at the arrows.

The controllers of the views are in the package de.fhg.fokus.dc.gui.managedbean.

This package contains only ManagedBeans, a special JSF bean. There function and

variables are available for the xhtml files. So, we use server-side functions and variables

inside the client view. These beans use the models from the package

de.fhg.fokus.dc.gui.model for saving variables. All beans have a @SessionScope or

@RequestScope annotation. This means, the used variables are valid for a user session

or lesser. FIGURE 38 shows all classes from the USerInterface.

Figure 37: Views from the UserInterface

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

88

The UserInterface use the container-managed security for user authentication and

authorization. The glassfish v3 server provides this with the default installation.

5.1.2.5 Connectors

The project Connectors has two responsibilities. It provides the REST interfaces and

manages the connections to the user devices. FIGURE 39 shows the UML class diagram

from the Connectors. The Connectors use also the container-managed security and JSF

2.0.

We use Jersey for the implementation of REST. Jersey is the reference implementation of

the Java Specification Request 311, also known as JAX-RS, which stands for Java API

for RESTful Web Services [43].

Users connect their devices to the server through the Connectors and enable the device-

specific resources to the system. The SessionManager from the package

de.fhg.fokus.dc.connector.manager is responsible for this task. This manager knows

all connected devices.

Figure 38: Class diagram from the UserInterface

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

89

Figure 39: Class diagram from the Connectors

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

90

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

91

6 Conclusion
The conclusion is divided into two parts. First we summarize the previous work and look

which objectives are achieved. The second part shows possible extension for the

designed server.

 Summarize and conclusion 6.1
The first chapter introduced the reader in the topic. We saw, that there is a lack of Web

Services, which offer services of device specific resources. Web Applications, which

want to use these resources, have to go their own way, because there are no standards in

this field of engineering. Users from these Web Applications have to install proprietary

software on their devices and the Web Applications have to maintenance these. These are

extravagant expenses, which are not acceptable for both parties. Therefore, we had to

develop a solution for this problem. Our solution based on five objectives. The objectives

are:

1. Enable services on heterogeneous and distributed devices for Web Applications

2. Increase interoperability for a looser coupling between the parts of distributed

devices

3. Make services on devices available as REST resources

4. Abstract the proprietary communication protocols or API's of devices and offer

their accessible functionalities via a RESTful API

5. Introduce a user-configurable rule-based system for service control access

Before we could develop a solution, we had to know some basics about the required

technologies. CHAPTER 2 gave us an overview. It explained at first five related terms

and discussed then some approaches about the topics mashups, access control and rule

engines. Afterwards we had a look at five projects with related objectives in CHAPTER 3.

After this point, we were well prepared to develop our own server architecture. That has

been done in CHAPTER 4 – our concept. We developed the complete architecture and

explained it with the help of a user story. Because the architecture of CHAPTER 4.2

covers only four of our five objectives, we extended this in the next chapter, where we

discussed the Property Framework. This is the core of our rule system. It is inspired by

the famous RBAC model, which is implemented in many systems. In CHAPTER 4.4 we

discussed the registering and connecting of user devices. With the developed

architecture, we could discuss several communication methods. We found out, that a

fully REST-based approach is well suited to our architecture and the pre-mentioned

objectives.

In CHAPTER 5, we developed the server, which was designed in the concept part. The

server was written in Java. This is our proof of concept. We implemented all required

features.

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

92

Now, we can say, that the work presented here reached all of its goals. We have a base,

where users can connect their devices and offer their resources. Web Applications have

the ability to use these resources via a REST interface. On top, the users have the ability

to restrict the access to their resources via a configurable rule-based system.

The projects Web of Things, Pachube and SenseWeb have nearly the same goals. The

three approaches virtualize sensors and offer them over as API. But this diploma thesis

does not concentrate on sensors. There is wider range with user devices. Pachube has

also an active community, which creates applications with this API. This shows us, how

actual the topic virtualizing of web-enabled devices is.

This diploma thesis goes another step further and developed an access control system for

the user resources. This is the real improvement over the other approaches.

Our objectives three and four postulate, that the <Device Cloud> server should offer the

resources of the user devices via a RESTful API. These objectives could be obsolete in a

few years, because Web Sockets will be establish as a standard for web servers and web

browser. Web Sockets as communication method is the best choice, if the technique is

more common. Because it does not increase the server load like the REST via server

method and have no high assumption for user devices like the REST with redirect

method. This communication method requires a running web server on a device.

We have seen in our concept, that a completely abstraction oft the user device is not

possible. The problems with the two REST-based communication methods are already

known. For the connection via Web Sockets need Web Application information about the

used devices. A complete abstraction is perhaps only possible with high effort. There

have to distribute new protocols and extension on server- client-side. But there is no way

for doing that.

 Future Work 6.2
It is commonly known, that the work on a software system is never complete. In this

chapter, we present some possible extensions for the <Device Cloud>

6.2.1 Indirect connected devices

We spoke always from direct connected user devices. But the Private Area Network

(PAN)
46

 contains also devices, which have not the ability to connect with the server. The

resources of these devices can be also enabled and virtualized.

To share these resources with the server, the user needs an additional application on a

device, which is already connected. The application searches for other devices in the

surrounding area and shows the user a list of results.

46
 A PAN describes a little network among computer devices, telephones and personal digital assistants

(PDA).

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

93

A possible scenario is a mobile device with such an App. The App searches for

Bluetooth-enabled devices in the near area and shows the user a list of these devices. The

user marks a listed device as trustable and adds it to his personal device cloud. These

devices will be always automatically available for Web Applications, when they are

located in the PAN of the activated client. A new search and adding are not necessary,

because the App knows already the previous found devices. The communication with

Bluetooth devices is specified through Bluetooth profiles. The App has to handle several

profiles in order to interact with the devices.

6.2.2 Community features

The <Device Cloud> addresses Web Applications as users of the enabled resources. We

can expand the group of requester with members of a community. Theses members could

be in a buddy list of the resource owner. It is possible to share the resources also with

other users of the community. The rule system should be extended, so that the resource

owner has the ability to create rules for restricting the access also for community

members. In the actual system, the resource owner can only restrict the access for a

complete community, which is represented through one or more Web Applications.

There is no need for an own community. We presented already an paper, which connects

an existing community with a device cloud. This was [37] and we discussed this

approach in the end of CHAPTER 3.3. The concepts of this approach are portable to

<Device Cloud>.

6.2.3 MashSSL

In this diploma thesis, a typical way of user resource sharing is described through the

following scenario.

Kevin uses his Notebook. He wants to use the camera service of Mango+. Kevin and

Mango+ have an account at <Device Cloud>. Kevin’s first step is to log in at <Device

Cloud>. Afterwards, he logs in at Mango+ and chooses the camera service. Mango+

calls via the <Device Cloud> REST interface Kevin’s resource, the camera. We assume

that on Kevin’s Notebook runs no server. Under these circumstances, we have to use the

communication method REST via server.

The usage of the camera in this scenario is relatively costly for the <Device Cloud>

server. The data from the camera take the way via the server, though there is no need for

this. The Web Applications Mango+ runs on the same device, where the camera is

located. But the Mango+ application and the <Device Cloud> client run in different

browser windows and have no connection with each other. The sandbox system of the

browser makes a connection impossible.

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

94

A solution for this problem is MashSSL [44]. This approach describes a technique to

establish a secure connection between the used Web Application and the <Device

Cloud> server. The connection is initiated through the user, who represents the broker.

FIGURE 40 shows this.

The advantage of this approach is that the used Web Application and the <Device

Cloud> client run in the same browser window. The Web Application can directly use

the <Device Cloud> client, which is connected to the <Device Cloud> server. If Mango+

wants to use the camera, it calls a method from the <Device Cloud> client, which

forwards it to the server. The <Device Cloud> server checks the related rules and offer

Mango+ a HTML tag, where the camera works.

6.2.4 Atom feed

The data-flow in our architecture is request-based. A Web Application hast to request a

resource from a user and get a response with the requested data. If a Web Application

wants to know ever the actual location from a user, it has to request this one periodically.

If another application also needs this resource, the server and the client device has to

process double the same function.

With the community features from CHAPTER 6.2.2, we get many requests for the same

resource. An example for this case is a location request App, which runs on the mobile

phones of all members of a community. Every instance of this App requests the location

from the other members. The user devices process these requests. They have a great

amount of work, because they have to process and response every request from the

User

Server with

MashSSL Toolkit

Server with

MashSSL Toolkit

Figure 40: MashSSL

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

95

community. This approach does not work already at a small community with a few

hundreds of users. Mobile phones have not the computing power to response hundreds of

requests per minute.

A practical solution is Atom feeds [45]. Atom is an alternative to RSS [46]. Both are

techniques for creating web feeds. Users get frequently updated content with the help of

web feeds. They subscribe to it and a program shows the data. Atom stands for two

related standards – the Atom Syndication Format [47] and the Atom Publishing

Protocol (APP) [48]. Atom Syndication Format is an XML-based language for web feeds

and APP is a HTTP-based protocol for creating and updating web resources.

The <Device Cloud> client can use this technique to share fast-changing values like the

location with a lot of Web Applications. The client updates the status to the <Device

Cloud> server. Web Applications can subscribe to this feeds and get frequently updates

from the server.

6.2.5 Quality of Service

Another type of rules could be the Quality of Service parameters. But these parameters

should not be set from the users, because it requires advanced skills to handle with these.

A normal user have not such skills.

The approach [18], which is explained in CHAPTER 2.2.1 shows, how a mashup creation

engine can use these parameters to choose a well suited mashup for the user. The ideas

from this approach can be adopt from this diploma thesis to offer a QoS rule. The user

can only choose, if he wants to activate this rule or not. The QoS rule adjusts it-self

automatically.

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

96

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

97

7 Appendix

 References 7.1

[1] Andreas M. Kaplan and Michael Haenlein, "Users of the world, unite! The

challenges and opportunities of Social Media," Business Horizons, no. 53, pp. 59-68,

2010.

[2] Google Inc. (2010, October) Google trends. [Online].

http://www.google.de/trends?q=web+2.0,social+media

[3] WAC. (2010, July) Wholesale Applications Community. [Online].

http://www.wholesaleappcommunity.com

[4] UPnP-Forum. (2010, November) UPnP-Forum. [Online]. http://upnp.org

[5] R. Bhatti, E. Bertino, and A. Ghafoor, "A trust-based context-aware access control

model for Web-services," in International Conference on Web Services (ICWS’04),

San Diego, California, USA, 2004, pp. 184-191.

[6] World Wide Web Consortium (W3C). (2004, February) Web Services Architecture.

document.

[7] Vlad Trifa, "Content Creation on the Web: Mashing Up the Real World With the

Internet," in Proceedings of The First International Workshop on Contents Creation

Activity Support by Networked Sensing (CCASNS), Kanazawa, Japan, 2008.

[8] Simon St. Laurent, Joe Johnston, and Edd Dumbill, Programming Web Services

with XML-RPC.: O'Reilly Media, Inc., 2001.

[9] World Wide Web Consortium (W3C). (2010, November) HTML5. [Online].

http://www.w3.org/TR/html5/

[10] World Wide Web Consortium (W3C). (2010, December) Web Storage. [Online].

http://dev.w3.org/html5/webstorage/

[11] Web Hypertext Application Technology Working Group (WHATWG). (2010,

December) Web Workers. [Online]. http://www.whatwg.org/specs/web-

workers/current-work/

[12] World Wide Web Consortium (W3C). (2010, November) Web Sockets API.

[Online]. http://dev.w3.org/html5/websockets/

[13] Roy Thomas Fielding, "Architectural Styles and the Design of Network-based

http://www.google.de/trends?q=web+2.0,social+media
http://www.wholesaleappcommunity.com/
http://upnp.org/
http://www.w3.org/TR/html5/
http://dev.w3.org/html5/webstorage/
http://www.whatwg.org/specs/web-workers/current-work/
http://www.whatwg.org/specs/web-workers/current-work/
http://dev.w3.org/html5/websockets/

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

98

Software Architectures," University of California, Irvine, doctoral dissertation 2000.

[14] Wikimedia Foundation, Inc. (2010, December) Wikipedia - The Free Encyclopedia.

[Online]. http://en.wikipedia.org

[15] Leonard Richardson and Sam Ruby, RESTful Web Service.: O'Reilly Media, 2007.

[16] Michael Ogrinz, Mashup Patterns. Boston, USA: Pearson Education, Inc., 2009.

[17] Cho Seongho, Kim Hyoungshick, Jung Dongshin, and Park Hoyeon, "Dynamic

Mashup Platform for Mobile Web Applications," in 2009 Digest of Technical

Papers International Conference on Consumer Electronics, Las Vegas, NV, USA,

2009.

[18] Xu Huiyang, Song Meina, and Luo Xiaoxiang, "A QoS-oriented management

framework for reconfigurable mobile mashup services," in 11th International

Conference on Advanced Communication Technology (ICACT), Myeonon-Ri,

Bongpyong-Myeon, Pyeongchang-Gun, Gangwon-Do, Korea , 2009, pp. 2001-

2005.

[19] Fedor Bakalov, Birgitta König-Ries, Andreas Nauerz, and Martin Welsch,

"Ontology-Based Multidimensional Personalization Modeling for the Automatic

Generation of Mashups in Next-Generation Portals," in First International

Workshop on Ontologies in Interactive Systems (ONTORACT), Liverpool, United

Kingdom, 2008, pp. 75-82.

[20] D. Richard Kuhn and David F. Ferraiolo, "Role-Based Access Controls," in 15th

National Computer Security Conference, Baltimore, Maryland USA, 1992, pp. 554 -

563.

[21] Ravi S Sandhu, Edward J. Coynek, and Hal L. Feinstei, "Role-Based Access Control

Models," IEEE Computer, vol. 29, no. 2, pp. 38-47, February 1996.

[22] Ravi Sandhu, David Ferraiolo, and Richard Kuhn, "The NIST model for role-based

access control: towards a unified standard," in RBAC '00: Proceedings of the fifth

ACM workshop on Role-based access control, Berlin, Germany, 2000, pp. 47-63.

[23] National Institute of Standards and Technology. (2010, November) Role Based

Access Control And Role Based Security. [Online].

http://csrc.nist.gov/groups/SNS/rbac/

http://en.wikipedia.org/
http://csrc.nist.gov/groups/SNS/rbac/

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

99

[24] R. Bhatti, "X-GTRBAC: An XML-based Policy Specification Framework and

Architecture for Enterprise-Wide Access Control," Purdue University, West

Lafayette, Indiana, USA, Master Thesis 2003.

[25] J. B. D. Joshi, Elisa Bertino, Usman Latif, and Arif Ghafoor, "Generalized Temporal

Role Based Access Control Model (GTRBAC) (Part I) - Specification and

Modeling," Purdue University, West Lafayette, Indiana, USA, Technical Report

2001.

[26] Elisa Bertino, Piero Andrea Bonatti, and Elena Ferrari, "TRBAC: A temporal role-

based access control model," ACM Transactions on Information and System

Security, vol. 4, no. 3, pp. 191--233, 2001.

[27] Sun Microsystems, Inc. (2003, September) JSR 94: Java Rule Engine API.

Specification.

[28] JBoss. (2010, November) Drools. [Online]. http://www.jboss.org/drools

[29] Jin Lei, Zhang Yawei, and Ye Xiaojun, "Secure Dataspace with Access Policies," in

International Symposium on Parallel and Distributed Processing with Applications

(ISPA), Sydney, Australia, 2008, pp. 701-706.

[30] Open Mobile Terminal Platform (OMTP). BONDI. [Online]. http://bondi.omtp.org

[31] OMTP. (2010, July) OMTP - Open Mobile Terminal Platform. [Online].

http://www.omtp.org

[32] JIL. (2010, July) JIL - Joint Innovation Lab. [Online]. http://www.jil.org

[33] GSMA. (2010, July) GSMA OneAPI. [Online]. http://oneapi.aepona.com

[34] Vlad Trifa, Samuel Wieland, Dominique Guinard, and Thomas Michael Bohnert,

"Design and Implementation of a Gateway for Web-based Interaction and

Management of Embedded Devices," ETH Zürich, master thesis 2009.

[35] Dominique Guinard and Vlad Trifa, "Towards the Web of Things: Web Mashups for

Embedded Devices," in Workshop on Mashups, Enterprise Mashups and

Lightweight Composition on the Web (MEM 2009), in proceedings of WWW

(International World Wide Web Conferences), Madrid, Spain, 2009.

http://www.jboss.org/drools
http://bondi.omtp.org/
http://www.omtp.org/
http://www.jil.org/
http://oneapi.aepona.com/

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

100

[36] Dominique Guinard, Vlad Trifa, and Erik Wilde, "Architecting a Mashable Open

World Wide Web of Things," Institute for Pervasive Computing, Eidgenössische

Technische Hochschule, Zürich, Architecting a Mashable Open World Wide Web of

Things 2010.

[37] Dominique Guinard, Mathias Fischer, and Vlad Trifa, "Sharing Using Social

Networks in a Composable Web of Things," in Pervasive Computing and

Communications Workshops (PERCOM Workshops), 8th IEEE International

Conference, Mannheim, Germany, 2010, pp. 702-707.

[38] Microsoft Corporation. (2010, December) Microsoft Research: SenseWeb. [Online].

http://research.microsoft.com/en-us/projects/senseweb/

[39] Connected Environments Ltd. (2010, December) Pachube. [Online].

http://www.pachube.com/

[40] World Wide Web Consortium (W3C). (2010, September) Geolocation API

Specification. [Online]. http://www.w3.org/TR/geolocation-API/

[41] Apple Inc. (2010, December) Apple - Mac App Store. [Online].

http://www.apple.com/mac/app-store/

[42] World Wide Web Consortium (W3C). (2010, November) Server-Sent Events.

[Online]. http://dev.w3.org/html5/eventsource/

[43] Sun Microsystems, Inc. (2008, September) JSR 311 - JAX-RS: The JavaTM API for

RESTful Web Services. Specification.

[44] SafeMashups Inc. MashSSL. [Online]. http://www.safemashups.com

[45] AtomEnabled Alliance. (2007, December) AtomEnabled. [Online].

http://www.atomenabled.org/

[46] RSS Advisory Board. (2010, December) RSS Advisory Board. [Online].

http://www.rssboard.org/

[47] Internet Engineering Task Force (IETF). (2005, December) The Atom Syndication

Format. Requests for Comments 4287.

[48] Internet Engineering Task Force (IETF). (2007, October) The Atom Publishing

Protocol. Requests for Comments 5023.

http://research.microsoft.com/en-us/projects/senseweb/
http://www.pachube.com/
http://www.w3.org/TR/geolocation-API/
http://www.apple.com/mac/app-store/
http://dev.w3.org/html5/eventsource/
http://www.safemashups.com/
http://www.atomenabled.org/
http://www.rssboard.org/

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

101

 Acronyms 7.2
ANSI American National Standards Institute

API Application Programming Interface

DCP Device Control Protocol

EJB3 Enterprise Java Beans 3.0

GPS Global Positioning System

GTRBAC Generalized Temporal Role Based Access Control

GUI Graphical User Interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

INCITS International Committee for Information Technology Standards

IP Internet Protocol

ITU International Telecommunication Union

JAX-RS Java API for RESTful Web Services

JPA Java Persistence API

JSF 2.0 JavaServer Faces 2.0

JSON JavaScript Object Notation

MAC Media Access Control

MMS Multimedia Messaging Service

MVC Model-View-Controller

NIST National Institute of Standards and Technology

OMTP Open Mobile Terminal Platform

OWL Web Ontology Language

PAN Private Area Network

PDF Portable Document Format

QoS Quality of Service

RBAC Role Based Access Control

RDBMS Relational Database Management System

RDF Resource Description Framework

REST Representational State Transfer

RFID Radio-frequency identification

SMS Short Message Service

SOA Service Oriented Architecture

SoD Separation of Duties

SVG Scalable Vector Graphics

TCP Transmission Control Protocol

UDDI Universal Description, Discovery and Integration

UDP User Datagram Protocol

UPnP Universal Plug and Play

URI Uniform Resource Identifier

URL Uniform Resource Locator

W3C World Wide Web Consortium

WAC Wholesale Applications Community

WHATWG Web Hypertext Application Technology Working Group

WSDL Web Services Description Language

WWW World Wide Web

XML Extensible Markup Language

XML-RPC Extensible Markup Language Remote Procedure Call

A configurable, heterogeneous Device Cloud for Web Applications

Hannes Gorges, 301068

102

	Kap10
	Goo10
	Tri08_1
	StL01
	Fie00
	Ric07
	Nat10
	Sun03
	Gui09
	WoT0310
	Ato10
	RSS10
	Int05
	Int07

