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Abstract 
 
The present paper deals with the characterization and modeling of the deformation behavior 
of titanium alloy Ti-X© under quasi-static conditions at room temperature. The material 
investigated is a rolled sheet of thickness 1.2 mm with a strong basal texture. In order to 
characterize the material behavior, monotonic tensile, compression and cyclic tests in 
different directions with respect the rolling direction were conducted. Texture information 
was obtained from electron backscatter diffraction (EBSD) data. Furthermore, strip drawing 
tests were carried out. Using the visco-plastic self-consistent texture model (VPSC) the 
experimental data have been extended to biaxial stress states. To describe the yield surface, 
the CPB06ex2 model (Plunkett et al., 2008) was used. This model can describe the anisotropy 
and the tension-compression asymmetry. Considering the evolution of the model parameters, 
anisotropic hardening could be described. An extension of the model with the approach of 
Armstrong and Frederick offers the possibility to account for the Bauschinger effect during 
cyclic loading. A very good agreement between FE simulation and experimental data was 
obtained. 
 
1. Introduction 
 
Because of their outstanding properties such as the favorable ratio between weight and 
strength, good ductility, high heat resistance, corrosion resistance and biocompatibility, 
titanium and its alloys are ideal materials for aerospace, medical engineering, chemical 
industry, and many other high-tech areas. 
In recent years, considerable efforts were undertaken to characterize and to model the 
response of titanium and its alloys (see for example, Follansbee and Gray, 1989; Nemat-
Nasser et al., 1999, 2001, Majorell et al., 2002, Kahn et al., 2004). The focus of these studies 
lay on the characterization and modeling of the uniaxial behavior at different strain rates and 
temperatures. However, the material is exposed to multiaxial loading during processing, 
which leads to a more complex response. So Kahn et al. (2007) dealt with the characterization 
and modeling of multiaxial loading conditions. Many studies dealt with the plastic 
deformation mechanisms (see for example, Lecomte et al., 1997; Yapici et al., 2006; 
Seshacharyulu et al., 2000, 2002). It turned out that, as in other hexagonal materials, twinning 
plays an important role besides slip. In contrast to dislocation slip, twinning is direction-
dependent, which may lead to a pronounced tension-compression asymmetry (Cazacu et al., 
2006). It has been shown that classical phenomenological plasticity models using von Mises 
or Hill’48 yield potentials are not capable of describing this asymmetry (see for example, 
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Nixon et al., 2010). In addition to the tension-compression asymmetry, anisotropic hardening 
also occurs in titanium and its alloys. 
Anisotropic formulations at the macroscopic level offer an approach for the description of the 
material behavior. These formulations have the advantage that they can be easily implemented 
into a finite element code and can easily be applied in calculations of complex forming 
processes. In recent years, for materials with cubic crystal structure significant progress has 
been made in the development of mathematical descriptions of anisotropic yield surfaces. In 
Cazacu and Barlat (2001, 2003) for example, the isotropic yield function of Drucker has been 
extended to an anisotropic yield function which describes the response of aluminum alloys. 
Furthermore, for three-dimensional stress states flow functions were developed, which are 
capable of describing the initial anisotropy and the tension-compression asymmetry. Thus, in 
Cazacu and Barlat (2004) an isotropic yield function has been extended to the anisotropic case 
by generalizing the invariants. The comparison between this yield function and experimental 
data for the hexagonal material magnesium showed that this model is capable of describing 
the anisotropy and the tension-compression asymmetry. In Cazacu et al. (2006) another yield 
function has been presented, which describes asymmetric yielding between tension and 
compression due to twinning. In a further step this yield function has been extended to cover 
also the anisotropy. For this purpose the stress deviator has been linearly transformed with a 
fourth-order tensor. This model was applied to magnesium and titanium alloys and showed a 
high degree of accuracy. In Plunkett et al. (2008) it is shown that this accuracy can be 
increased by carrying out two or more linear transformations. However, the consideration of 
further linear transformations requires additional model parameters. One way to describe the 
anisotropic hardening is presented in Plunkett et al. (2006). For certain values of equivalent 
plastic strain the coefficients of the yield function were determined from experimental data. In 
a further step the equivalent stress is calculated. For strains that are located between two grid 
points, it is interpolated linearly between the calculated equivalent stresses. With this 
approach the shape of the yield surface in stress space is capable to evolve. Another important 
aspect is the description of the material under cyclic loading. Especially in deep drawing 
processes the material undergoes a cyclic loading, which has a significant influence on the 
springback behavior of deep-drawn components. Therefore the description of the Bauschinger 
effect, connected with the cyclic loading, plays a central role to properly reflect the material 
response. One approach to this is the model of Armstrong and Frederick (1966). 
In the present study (Section 2) the results of different experimental investigations will be 
presented. The aim was to characterize the material under quasi-static conditions at room 
temperature. In addition to standard tensile, compression and cyclic tests, the texture was 
measured using electron backscatter diffraction (EBSD). Furthermore, a simple deep drawing 
test was carried out, a so-called “strip drawing test”. This test includes all the essential 
elements of a conventional deep drawing process and is suitable to investigate the springback 
behavior of the material. In Section 3, with the help of the visco-plastic self-consistent texture 
model (VPSC) (see Lebensohn and Tomé, 1993), the material behavior under biaxial stress 
states is analyzed in order to generate numerical data additional to the experimental data base. 
This information about the material behavior is used for introducing a finite plasticity model 
with an appropriate yield function and to identify the material parameters (Section 4). For 
representing the evolving plastic anisotropy, the yield function CPB06ex2 (see Plunkett et al., 
2008) is applied. This model is suitable to describe processes in which due to a monotonic 
loading history the isotropic hardening is significant, for example in a hydroforming process. 
In deep drawing processes not only isotropic hardening but also kinematic hardening is 
relevant, due to cyclic deformation. For this reason, the material model is enhanced by a 
backstress tensor for modeling the kinematic hardening. Finally, numerical studies on simple 
sheet metal forming processes are used to demonstrate the capability of the model for 
representing the material behavior of Ti-X. 
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2. Experimental procedures 
 
2.1 Material 
 
The titanium alloy used in this study was Ti-X. This alloy is a new development by 
ThyssenKrupp VDM GmbH and was supplied in the form of a rolled sheet with thickness 1.2 
mm. The physical properties of this alloy are comparable with those of Ti-Grade 2. The 
composition can be found in table 1. 
 
Table 1: Chemical composition of the Ti-X alloy in weight-% [wt%]. 

Ti Si Fe RE O2 

base material 0.3 0.1 0.2 0.06 

RE: rare earth, Cerium misch metal 
 
The alloying of silicon and iron increases the oxidation resistance. Both the rare earth and 
cerium misch metal lead to a lowering of the strength. In contrast to commercially pure 
titanium this alloy can be used up to 900 °C. Hence, this alloy is suitable for the use in 
exhaust systems. According to Boyer et al., 1994, the density is about ρ = 4.51 g/cm3, the 
Poisson’s ratio between ν = 0.28 to 0.34 and the Young’s modulus E = 103000 MPa. It should 
be noted that the Young’s modulus of sheet metals depends on the orientation with respect to 
the rolling direction, as shown in Section 2.2.3. The beta-transus temperature is typically 910 
°C. 
 
Investigations with optical microscopy showed that the material has a globular microstructure 
(Fig. 1). The average grain size is about 10 µm. Electron backscatter diffraction (EBSD) 
measurements showed that the as received rolled sheet exhibits a strong basal texture (Figs. 
2). 

 
Fig. 1: Micrograph of the titanium alloy Ti-X. 
 

 
Fig. 2: Inverse pole figure. 
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2.2 Quasi-static behavior of Ti-X 
 
2.2.1 Tensile tests at room temperature 
 
To characterize the sheet metal under quasi-static conditions, tensile tests in three different 
directions to the rolling direction (0°, 45°, 90°) at room temperature were conducted. These 
experiments were performed on a universal testing machine (INSTRON 8861) with a 100 kN 
load cell. The specimens were cut from the sheet using Electrical Discharge Machining 
(EDM) to avoid changes in the material due machining. Fig. 3 shows the geometry and the 
dimensions of the specimens used for in-plane uniaxial tensile testing. 
 

 
Fig. 3: Geometry und dimensions (in mm) of the specimens. Thickness t = 1.2 mm. 
 
The tensile tests were performed at a crosshead speed of v = 0.02 mm/s up to failure. As 
shown in Fig. 3 the gauge length of the extensometer was L0 = 30 mm. During the 
experiment, force and displacement in longitudinal and transverse directions were recorded. 
The displacement in longitudinal direction was measured by an extensometer while the 
displacement in transverse direction was measured optically. In addition to the stress-strain 
curves, the r-values were also calculated. To ensure the reproducibility of the experiments, 
three trials per test direction were carried out. 
 
2.2.2 Compression and tension-compression tests at room temperature 
 
Compression and tension-compression tests were conducted to characterize the well-known 
tension-compression asymmetry as well as the cyclic behavior of titanium. The data from the 
cyclic tests are used to fit the parameters of the Armstrong and Frederick model. By Electrical 
Discharge Machining (EDM) the specimens were cut in three different directions to the 
rolling direction (0°, 45° and 90°). In Fig. 4, the geometry and the dimensions of the 
specimens are shown. To avoid buckling of the specimen an appropriate ratio between width 
and thickness is chosen. This leads to a gauge length of the extensometer of L0 = 1.3 mm. 
 

 
Fig. 4: Geometry and dimensions (in mm) of the specimens. Thickness t = 1.2 mm. 
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The compression and the tension-compression tests were performed with a special device on 
an INSTRON 1380/2 (Fig. 5). A very precise clamping tool, rigid sample holder and a small 
gauge length prevent buckling of the specimens in the compression range. Due to the 
commencement of bulging, the tests could only be run up to 4 % plastic strain in the 
compression range. For the compression tests, two trials per specimen orientation were 
carried out. In the same way two trials per test direction were conducted for the tension-
compression and compression-tension test respectively. This should detect whether the 
sequence of the loading directions, i.e. tension or compression first, has a relevant influence 
on the resulting cyclic stress-strain curves. 
 

  
Fig. 5: Experimental setup for compression and tension-compression experiments (left), detail (right). 
 
 
2.2.3 Results 
 
Fig. 6 shows the true stress-strain curves measured in tensile tests before the onset of necking. 
In addition to the different initial flow stresses the material also exhibits anisotropic hardening 
and significant differences in the r-values. The experiments are reproducible. Table 2 lists 
some characteristic values of this material. 

 
Fig. 6: Tensile tests in 0°, 45° and 90° to the rolling direction at room temperature. 
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Table 2: Technical values at room temperature. 

test direction 0° 45° 90° 

Rp0,2 [MPa] 297 333 384 

Rm [MPa] 430 407 442 

Ag [%] 16,08 8,97 4,77 

A30 [%] 37,77 40,33 33,17 

Young’s-modulus [GPa] 100 108 116 

r-value [-] 1,06 2,36 3,3 

 
The compression tests show anisotropy of the initial yield stress, while, there is an almost 
equally strong strain hardening in the investigated strain range (Fig. 7). A comparison 
between the tensile and compression tests shows the tension-compression asymmetry, typical 
for hexagonal materials with this texture. Due to the commencement of a kink, the data were 
recorded only up to 4 % plastic strain. Again, the experiments were reproducible. 

 
Fig. 7: Compression tests in 0°, 45° and 90° to the rolling direction at room temperature. 
 
In Fig. 8 A-C the measured cyclic stress-strain curves for three cycles are shown. The 
experiments were carried out up to a strain amplitude of 4%. A very good reproducibility was 
observed. In all experiments a pronounced Bauschinger effect is visible, regardless of the 
orientation. 
 
 
 
 
 
 
 
 
 
 
 



 7 

A:  Cyclic test in 0° direction 

  
B: Cyclic test in 45° direction 

  
C: Cyclic test in 90° direction 

  
Fig. 8: Cyclic tests in different directions with strain amplitude of 4%. 
 
 
2.2.4 Strip drawing test at room temperature 
 
To investigate the springback characteristics of the studied material, a so-called strip drawing 
test was performed. This test includes the essential elements of a conventional deep drawing 
process. The experimental setup is shown in Fig. 9. A sheet metal strip with a width of 30 mm 
and a length of 348 mm is tested. In a first step, the blank holder presses the strip against the 
die with a force of 4 kN. This corresponds to a pressure of 3 MPa. The blank holder force 
controls the flow of material and was chosen such that the sheet did not fail when entering the 
die. Then a punch draws the sheet into the die (punch stroke of 60 mm), thus forming a hat 
profile (see Fig. 10 left). After removing punch and blank holder the strip springs back (see 
Fig. 10 right). The design of the tool allows the variation of the die radius, the drawing gap 
between the die and the punch and the blank holder force. In the studies of this work a die 
radius of 5 mm is used. To reduce the friction between blank holder, die and sheet, a standard 
deep drawing oil (KMT80) is used. 
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The springback is an important reference for the evaluation of the used material model with 
anisotropic-kinematic hardening. 
 

 
Fig. 9: Section through the experimental setup of the strip drawing test (Krasovskyy, 2005). 
 

  
Fig. 10: Deep drawing process (left), shape after springback (right). 
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3. Polycrystal model 
 
As mentioned before, the uniaxial standard tests are supplemented by using simulation results 
of the visco-plastic self-consistent texture model (VPSC). Therefore, biaxial stress states, i.e. 
biaxial tension and biaxial compression, are investigated by virtual tests. In this model, each 
grain is regarded as an anisotropic, viscoplastic, ellipsoidal inclusion embedded in a 
homogeneous equivalent medium. Therefore, the information about the orientation and the 
volume fraction of grains must be available. The homogeneous equivalent medium represents 
the average properties of all the other grains. There is a stress-strain coupling between grain 
and medium. The plastic deformation behavior of the grain is calculated on the basis of single 
crystal plasticity. By considering the crystal lattice orientation and the rotation due to an 
external load, the anisotropy and its evolution can be described. By homogenization of the 
calculated strains and stresses of each grain, the macroscopic response of the material is 
produced. A modified Voce model is used to describe the hardening behavior on a slip plane 
(Eq. (1)): 

 ( ) ( )ss

essss
c

10 /
110 1 τθθτττ Γ−−⋅Γ++= . (1) 

Here s
cτ  is the critical shear stress of the sliding system s, Γ  the accumulated strain and s

0τ , 
s
1τ , s

0θ , as well as s
1θ  are model parameters. A detailed description of the model can be found 

in the original article (Lebensohn and Tomé, 1993). 
To perform the VPSC simulations, the initial texture shown in Fig. 2 was used; 1509 grains 
were considered in the simulations. The parameters for the Voce hardening law were fitted by 
hand to experimental data (tension in 0° and 90° and compression in 0°). It was assumed that 
plastic deformation occurs due to prismatic, basal, and pyramidal <c+a> slip systems as well 
as twinning. Figs. 11 and 12 show the fitted stress-strain curves and Table 3 shows the fitted 
hardening parameters. The strain rate exponent n is set to 20 to ensure an approximately rate-
independent behavior. For the material under investigation, the characteristic twin shear has a 
value of 0.169. 
 
Table 3: Hardening parameters for Voce law. 

Mode τ0 τ1 θ0 θ1 

Prismatic 110 60 2000 190 
Basal 220 60 2600 10 
Pyramidal <c+a> 450 1 1 1 
Tensile twinning 250 35 600 0 
 
To assess the quality of the determined model parameters, a compression test in 90° was 
simulated. As shown in Fig. 12, the model could predict the experimental curve well. In 
addition, the r-values in 0°, 45° and 90° were simulated with this parameter set and compared 
with the experimental values (Table 4). Again, the agreement was very good. 
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Fig. 11: Comparison between VPSC simulation and experimental data for tensile tests. 
 

 
Fig. 12: Comparison between VPSC simulation and experimental data for compression tests. 
 
 
Table 4: Comparison of the r-values between VPSC simulation and experimental data. 

 0° 45° 90° 

Experimental data 1,06 2,36 3,3 

VPSC simulation 1,04 2,31 3,3 
 
In a further step, the predictive accuracy of the VPSC model was checked with respect to the 
texture development. Thereto a tensile test up to a true plastic strain of 10.5 % was performed 
and the texture was measured using EBSD. In Fig. 13 the measured pole figures are compared 
with pole figures calculated with the VPSC model. The qualitative features are consistent, 
while the predicted intensities are slightly too high. Thus, after these validations it can be 
assumed that the used parameter set is suitable to describe the behavior of the material under 
multiaxial loading. On this basis, biaxial stress states in tension and compression were 
simulated. 
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Fig. 13: Texture at 10.5 % plastic strain, above: experimental data from EBSD, below: VPSC simulation. 
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4. Macroscopic model 
 
On the macroscopic level the anisotropic yield locus and the hardening behavior are described 
using the anisotropic yield function CPB06ex2 after Plunkett et al., 2008. This model is 
briefly described below. 
 
4.1 Material model 
 
In the co-rotational framework, the strain rate tensor is additively decomposed into an elastic 
and a plastic part (see for example Han et al., 2003, Kahn and Huang, 1995, Wu et al., 2003) 
 

 pe DDD ˆˆˆ += . (2) 

 
Furthermore, a hypo-elastic model is used, in which the stress-strain relationship in the elastic 
region is given by 
 

 ]ˆˆ[ pDDEσ −=& , (3) 

 
where E denotes the fourth-order elasticity tensor. The flow potential is defined as 
 
 )(),(),( plplpl YF εεσε −= σσ . (4) 

 
Therein, σ  is the equivalent stress as a function of the stress tensor and the equivalent plastic 
strain and Y is the reference stress as a function of the equivalent plastic strain. The reference 
stress is determined experimentally, for example by a uniaxial tensile test. Plastic flow begins 
when the yield condition (Eq. 5) and the loading condition is satisfied: 
 
 0),( =plF εσ . (5) 

 
The evolution of the plastic strain is given by the associated flow rule 
 

 
σ

D
∂
∂= F

p λ&ˆ , (6) 

 
where λ&  denotes the plastic multiplier. From the work-equivalence principle 
 

 ( ) σDσ ⋅== pplplplW ˆ,εσε&&  (7) 

 
follows the relationship between the equivalent plastic strain rate and the increment of the 
plastic multiplier: 
 
 λε && =pl . (8) 

 
The equivalent stress is written in the form 
 

 [ ] afB /1⋅=σ , (9) 
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where B is a constant defined such that the equivalent stress in the preferred direction (e.g. the 
rolling direction) reduces to the reference stress (Plunkett et al., 2006). The yield function f 
has the form 
 

( ) ( ) ( ) ( ) ( ) ( )aaaaaa
kkkkkkf '

3
''

3
'
2

''
2

'
1

''
1332211 Σ−Σ+Σ−Σ+Σ−Σ+Σ−Σ+Σ−Σ+Σ−Σ= . (10) 

 
The tension-compression asymmetry can be described by k and k’. The parameter a represents 
the degree of homogeneity, and Σ  and '

Σ  are linear transformations of the stress deviator S 
and are defined as follows: 
 
 SCΣ :=  and SCΣ :'' = , (11) 
 
where the stress deviator S is determined by 
 

 ( )3322113
1 σσσ ++−= σS . (12) 

 

1Σ , 2Σ , 3Σ , '
1Σ , '

2Σ , and '
3Σ  are the principal stresses of the transformed stress deviator. The 

fourth-order transformation tensors C and C’  are represented in matrix notation by C  and 'C  
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For k ∈ [-1, 1] and a ≥ 1 the anisotropic yield function is convex. C, C’ , a, k and k’ are model 
parameters, which are fitted based on experimentally determined flow curves for monotonic 
tensile and compression tests in different directions relative to the rolling direction, r-values in 
different directions and further tests such as bulge tests. For Cii = 1 and Cij = 0 (i ≠ j), k = k’ = 
0 and a = 2 the yield function reduces to the isotropic yield function. 
 
With this model we are able to describe an anisotropic yield surface. Due to texture evolution 
the yield surface changes its shape with increasing equivalent plastic strain. To account for 
this effect in the model, a set of parameters must be determined for a certain number of values 
of the equivalent plastic strain. Between these reference points, the stress is linearly 
interpolated. For more information on this procedure see Plunkett et al. (2006) and Nixon et 
al. (2010). It has been shown that the proposed yield function can represent the yield surface 
of titanium alloys for monotonic loading paths with high accuracy. 
 
4.2 Application of the proposed model to the titanium alloy Ti-X 
 
4.2.1 Parameter fitting 
 
The experimental data used for the parameter fitting come from tension and compression tests 
as well as r-values in three different directions to the rolling direction. For this material the 
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uniform elongations are relatively small. This means that there is information about the 
material behavior only for small strains. In view of the simulation of deep drawing processes, 
this database is not sufficient. Therefore, it is necessary to extrapolate the experimental data to 
larger strains. In this study simple strain dependent hardening models were used. The 
extrapolated data were also considered in the fitting procedure. Furthermore, the results of 
VPSC simulations for biaxial stress states were also taken into account. Based on this 
database, the anisotropy coefficients lying in the sheet plane were fitted (Cij für i, j ≤ 4 und k). 
For this purpose the flow potential has to be formulated for the stress states to be fitted. This 
leads to the following equations: 
 

 ref
ijij

biAxCT Y
kkCC ),,,(
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( )















∂
∂+

∂
∂−

∂
∂+

∂
∂−

∂
∂

=

yyxx

yyxyxx

FF

FFF

r

σσ

σ
θ

σ
θ

σ
θ

θ

22 cos2sinsin

 (15) 

 
with °≤≤° 900 θ  (Plunkett et al., 2008). 
 
The model parameters can be determined by minimizing an error function (Nixon et al., 2010) 
of the form 
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*T:= Tension, C:= Compression, biAx:= biaxial stress state 
 
for i, j ≤ 4. The parameters k, l, m, n stand for the number of experimental data points. The 
experimental data were equally weighted. The anisotropy coefficients C55, C66, C’55 and C’66 
which are associated with out-of-plane properties were set to the isotropic values (i.e. unity), 
because no experimental data were available. Assuming a plane stress condition as it is usual 
for sheet metals, this is justified. The degree of homogeneity was set to a = 5. 
A successful parameter fitting procedure requires that the initial parameter set is appropriate 
because usually the minimum square error is a local minimum. This means that the model 
parameters are not unique. It has turned out to be helpful to take the isotropic case as a 
starting parameter set, i.e. to set the diagonal entries of the transformation tensor to the value 
1 and all other parameters to the value 0 (except parameter a). The calculated parameters are 
listed in Table 5 for a fixed value of the equivalent plastic strain. 
 
Table 5: Coefficients for the yield function CPB06ex2 for Ti-X corresponding to fixed values of the equivalent 
plastic strain. 

plε  0% 1% 4% 10% 16% 20% 

C11 2,2703 4,9825 3,2303 3,6414 4,4904 4,8760 
C22 1,7865 0,0728 0,9109 2,1066 2,9378 3,4260 
C33 1,3511 2,8806 2,0464 2,8788 3,8952 4,4659 
C44 2,3264 4,2674 2,8350 3,7434 4,5385 4,9353 
C55 1 1 1 1 1 1 
C66 1 1 1 1 1 1 
C12 -0,1178 0,1174 -0,4448 -0,9595 -1,2630 -1,5533 
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C13 -0,3976 1,4200 0,7389 0,9459 1,3924 1,5741 
C23 0,6981 -0,9042 -0,8541 -0,7793 -0,7103 -0,7051 
k 0,0586 0,0733 0,0855 0,1228 0,1817 0,2646 
 

plε  0% 1% 4% 10% 16% 20% 

C’11 2,2819 2,6113 1,8666 2,1220 2,8020 3,1050 
C’22 1,6307 -2,2333 -1,5571 -0,1821 -0,0122 -0,0105 
C’33 1,6250 2,2883 1,8577 2,1274 2,7466 2,9793 
C’44 0,0596 3,1070 2,6287 2,7399 3,6048 3,9002 
C’55 1 1 1 1 1 1 
C’66 1 1 1 1 1 1 
C’12 0,0573 0,4731 0,1926 0,1283 0,1566 0,2393 
C’13 0,4264 -0,9170 -0,6090 -0,5049 -0,4534 -0,2991 
C’23 -0,0049 -0,2775 0,1745 0,1345 0,0476 0,0422 
k’ -0,0817 -0,2751 -0,3434 -0,6025 -0,6549 -0,8687 
 
Fig. 14 (left) shows the yield loci of CPB06ex2 in the plane stress space corresponding to the 
parameters of Table 5. It can be seen that the shape of the yield locus evolves with increasing 
strain. Furthermore, the model accurately describes the experimental as well as the 
extrapolated data points and those simulated with VPSC. In Fig. 14 (right), the yield loci of 
von Mises, Hill’48 and CPB06ex2 at 0 % and 20 % equivalent plastic strain are shown for 
comparison. It can be seen that the models of von Mises and Hill’48 are not able to describe 
the material behavior with acceptable accuracy. Especially for biaxial stress, these models 
cannot reproduce the available data, although this stress state is particularly important for the 
simulation of sheet metal forming processes. 
 

Fig. 14: Yield loci according to CPB06ex2 (left). Yield loci according to Von Mises, Hill and CPB06ex2 (right). 
 
4.2.2 Single element simulation 
 
The yield function presented in section 4.1 has been implemented in a ABAQUS VUMAT by 
using a cutting plane algorithm. For monotonic uniaxial loadings, single element simulations 
were performed using a continuum element with eight nodes and reduced integration 
(ABAQUS type: C3D8R). In each simulation four nodes on one face of the element were 
constrained in loading direction and the four nodes on the opposite face were given a 
displacement in either the tensile or compressive direction. The calculated stress-strain curves 
were compared with the experimental data (Fig. 15 A - C). 
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A:  Rolling direction 

Compression Tension 

  
B: 45° direction 

Compression Tension 

  
C: transverse direction 

Compression Tension 

  
Fig. 15: Comparison between experimental data and simulation results for uniaxial loading in different 
directions. 
 
It should be noted that the model can describe the experimental data for tensile and 
compressive loading in all directions very well. Thus, it can reproduce the anisotropic 
response of the titanium alloy under monotonic loading. In deep drawing processes not only 
isotropic hardening but also kinematic hardening is relevant, due to cyclic loading. For this 
reason, the material model is extended for this kind of loading processes. 
 
4.3 Material model for cyclic loading 
 
Especially in deep drawing processes, the material undergoes cyclic deformation in many 
areas (e.g. drawing radii, drawing bead). Therefore the description of the Bauschinger effect 
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plays a central role. For this reason, kinematic hardening as a functional of plastic strain is 
considered to describe cyclic plastic deformation of the material, in addition to the isotropic 
hardening. One approach to this is the model of Armstrong and Frederick (1966). 
 
4.3.1 Finite plasticity including kinematic hardening 
 
To take kinematic hardening into account, Eq. (11) is replaced by  
 
 )-(: XSCΣ =  und )(:'' XSCΣ −= . (17) 
 
The backstress tensor X is written as a sum of several components (Chaboche and Rousselier, 
1983): 
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=

=
m

k
k

1
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The evolution equations for the components of the backstress tensor are given by 
 

 kkpkk bc XDX λ&& −= ˆ  (19) 

 
where ck and bk are model parameters. The flow potential expands to 
 
 )(),,(),,( plplpl YF εεσε −= XσXσ . (20) 

 
The isotropic hardening Y is given by 
 

 )1()( 2

1
plk

ypl ekY
εσε −−⋅+= , (21) 

 
where σy denotes the radius of the yield surface in reference direction (here: rolling direction) 
at the beginning of plastic yielding. The maximum size of the yield surface in reference 
direction is defined by k1, k2 defines how fast this saturation value is reached as a function of 
the equivalent plastic strain. The model parameters k1 and k2 are fitted together with the 
parameters of the backstress tensor to cyclic loading tests. Thus, the hardening response of the 
material is described by seven parameters, when two backstress tensors are used. 
 
4.3.2 Parameter fitting to one load cyclic 
 
The fitted model parameters for the isotropic-kinematic hardening model with two 
backstresses are shown in Table 6. 
 
Table 6: Fitted model parameters: Fit to experimental data for one load cycle. 

isotropic hardening kinematic hardening 

σy k1 k2 c1 b1 c2 b2 

226.26 112.56 12 18000 198 296 5 

 
The model parameters were fitted to the first load cycle of the cyclic loading test and the 
stress-strain curve from the monotonic tensile test in rolling direction. The consideration of 
the tensile test is necessary because of the relatively small strain amplitudes achieved in the 
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cyclic test. Thus, a more accurate description of the hardening at larger strains is possible. Fig. 
16 shows the experimental and the fitted tension and tension-compression curves. The small 
difference between the results of the tension and the tension-compression tests may be 
explained by the use of two different testing machines. 
 

 
Fig. 16: Experimental and fitted tension and tension-compression curves in rolling direction. 
 
4.3.3 Simulation of strip drawing tests 
 
The strip drawing tests described in section 2.2.4 were simulated with the proposed model and 
the computed springback was compared with the experimental results. Furthermore, the 
results were compared with the predictions of simpler models (von Mises and Hill’48) to 
determine the influence of a more accurate yield model on the springback prediction. It should 
be noted that kinematic hardening is considered in all those simulations. The simulations were 
performed using the explicit solver ABAQUS/Explicit. The subsequent elastic springback of 
the strip was simulated implicitly with ABAQUS/Standard. The strip was discretized with 
solid elements of ABAQUS type C3D8R. 
The friction coefficient between strip and tool was set to µ = 0.12. It is known from previous 
studies that the Young’s modulus has a significant influence on the springback. Since this 
study is aimed to compare different plasticity models, a unique Young’s modulus of E = 116 
000 MPa was used for both directions, despite the fact that slightly different moduli were 
obtained from the starting slopes of the tensile tests (see Table 2). 
A comparison of the springback contours of the various models with experimental data is 
shown in Fig. 17. 
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rolling direction transverse direction 
 
A:  yield function CPB06ex2 

  
B: yield function Von Mises 

  
C: yield function Hill’48 (Fit of the stress values) 

  
D: yield function Hill’48 (Fit of the r-values) 

 
 

 
Fig. 17: Comparison between experiment (black) and simulation (red) using different yield functions. 
 
The complex yield function of CPB06ex2 is able to predict the contours in rolling and 
transverse directions very well (Fig. 17 A). The yield function of von Mises also shows good 
agreement in rolling direction, but calculates a slightly too large springback in transverse 
direction (Fig. 17 B). The yield function of Hill’48 delivers inferior results, especially in 
transverse direction (Fig. 17 C and D). 
 
One reason why the standard von Mises model could reproduce the experimental results with 
only small deviations could be that there is only little tension-compression asymmetry of the 
material used (see Fig. 6 and 7). In addition, it can be seen from Fig. 14 (right) that both the 
von Mises model and the CPB06ex2 model describe the available experimental data points in 
the principal directions σx = 0 and σy = 0 almost equally well. These are the predominant 
loading directions in the strip drawing tests evaluated here. 
The clearly insufficient results from the Hill’48 model correspond with the large deviation of 
the yield locus from the data points (see Fig. 14 right). Particularly in transverse direction, the 
differences are quite large. 
The analyzed results demonstrate the superiority of the new model over the standard models. 
The fact that the von Mises model also gives very reasonable results may be explained by the 
almost identical predictions of the yield surface in the rolling direction in Fig. 14. However, it 
can be seen that in transverse direction the von Mises model can predict the shape less well. 
This can be explained by the deviation of the yield locus at small strains in transverse 
direction (see Fig. 14). 
It might be concluded that the strip drawing test with in principle uniaxial loading is not well 
suited to discriminate between the CPB06ex2 and the von Mises model. In many real drawing 
processes, however, the stress-strain histories are much more complex and far away from the 
uniaxial state. Therefore, the advantages of the complex CPB06ex2 model over the other 
models must be proven in further investigations. 
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5. Conclusions 
 
In this work, extensive experimental studies on the deformation response of titanium alloy Ti-
X were carried out. In addition to standard tension, compression and tension-compression 
tests, the texture was determined using EBSD. For the validation of the model used, strip 
drawing tests were available. 
In the experimental results the tension-compression asymmetry, typical for titanium materials 
and the anisotropy can be observed. The occurrence of the tension-compression asymmetry is 
due to different deformation modes which are activated differently depending on the loading 
direction; i.e. under compression loading there is twinning while under tension there is no 
twinning. Based on the findings of the experiments an anisotropic yield function (CPB06ex2 
from Plunkett et al., 2008) has been chosen, which is able to describe the features of the 
observed material response. By evolution of the model parameters as a function of equivalent 
plastic strain, anisotropic hardening could be described. The simulation of monotonic loadings 
shows that this model is able to reproduce the anisotropic hardening behavior with great 
accuracy. In a further step the model was extended to include the Bauschinger effect. This is 
of great importance for the springback simulation. The finite element simulations of strip 
drawing tests agree very well with the experimental results. 
The models used so far do not take into account the influence of the strain rate. However, it is 
known that especially titanium alloys have a strong strain rate dependency (see for example 
Khan et al., 2004, 2007, Chichili et al., 1998). For this reason there is a great interest in the 
extension of the present model. 
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