• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Remote actuation of light activated shape memory polymers via D-shaped optical fibres
 
  • Details
  • Full
Options
2020
Journal Article
Title

Remote actuation of light activated shape memory polymers via D-shaped optical fibres

Abstract
Shape memory polymers (SMPs) and their composites (SMPCs) can hold a programmed temporary shape and recover to their original shape once exposed to a particular external stimulus. The stimulus light has the advantage of being both an excitation energy source and a control signal carrier for remote actuation of SMP materials. Here we present the capability of D-shaped optical fibres to send near infrared (NIR) light into a light activated shape memory polymer composite (LASMPC) which generates the adequate photothermal effect necessary for the shape recovery process of relatively large samples. A D-shaped optical fibre enables dispersion of light through the polished area around the fibre than the dispersion of light through the tip of the fibre. Embedment of a D-shaped optical fibre in a LASMPC creates a single unit smart actuator, which can be remotely activated by light. Remotely controllable smart actuators can be located at any difficult to reach positions and controlled safely with light energy. It would be a breakthrough technology for biomedical, aerospace and many other engineering applications.
Author(s)
Herath, M.
Epaarachchi, J.
Islam, M.
Zhang, F.
Leng, J.
Fang, L.
Yan, C.
Peng, G.D.
Schade, W.
Journal
Smart materials and structures : SMS  
DOI
10.1088/1361-665X/ab72ea
Language
English
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024