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ABSTRACT 
 
 
 

This project aims at developing a novel feature movement mechanism for Finite 
Element Analysis (FEA) meshes through a haptic pen (Phantom stylus) within a 
Virtual Reality (VR)-based environment. The tools developed in this project allow 
for making real-time feature movements and gesture-based manipulations on 
surface and volume meshes which lead to “what-if-analysis” on the fly. Focus of 
the work is the real-time operation in highly resources and computing intensive 
envision meshes. 
 
The approach here presented might enable the project to head towards 
conceptual simulations within the engineering domain (targeting at linear static 
analysis). Methodologies are presented for interactive mesh modifications within 
linear static problems based on tetrahedral meshes, ‘on-the-fly’ feature 
movements (such as through holes), the adaptation of the surrounding volume 
mesh, fast and adaptive mesh refinement techniques, quality measures to ensure 
the consistency and quality of the newly, ‘on-the-fly’ generated elements and the 
necessary topological operations for unstructured triangular tetrahedral mesh. 
Because of the interactive environment, all operations have to comply with the 
real-time constrain and have to be evaluated for local simplicial elements. 
 
In order to reduce the analysis and computation overhead, a new idea was 
introduced for local evaluations based on an integrated submodeling procedure. 
From global to local and coarse to fine, here additional constrains like influence 
and consistency on/with the overall model have to be considered. The approach 
take essential boundary conditions into account which constrain the isolated part 
of the submodel and which are derived from the global solution. 
 
Within the engineering environments, the explicit and implicit methodologies from 
global to locally detailed analysis (from coarse to refined results) allows the 
approach to head for fast preliminary design evaluations. 
 
The project has relevance for the computer graphics field because it will offer 
human interaction with feedbacks for real-time applications, supporting industrial 
applications. In the same way, the industrial companies (like aircraft and 
automobile manufacturers) could take benefit of the results, since it supports 
engineers with tools for conceptual simulations and shortening analysis cycles, 
reducing cost and time to market. 
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1. INTRODUCTION 
 
 
 

During the last decade main efforts within the scientific and engineering 
visualization community focused on the interactive display and visualization of 
(large) data sets which result from resource intensive FE or CFD simulations. 
However, most of those simulations are done off-line which do not allow for 
interactive 'what-if' analysis in view of a change of the primary design domain. All 
simulation results are either kept within large databases for post processing 
purposes or cannot be processed in a 'user-in-the-loop' resp. interactive system. 
Design changes, such as the movement or suppression of features, within the 
underlying CAx/FE models usually imply many manual interferences, repair and 
efforts (remeshing tasks of the area in question, grid repair, etc.) and are not 
suitable for highly interactive environments. In order to guarantee elements of 
high quality during remeshing or mesh refinement tasks, time consuming 
operations and processing are done in off-line processes and the results of the 
simulations with the newly generated domains are usually post processed in later 
stages. 
 
Current virtual reality systems are facing a paradigm shift away from pure 
visualization and design review systems to more generative environments, in 
which designer are able to sketch their designs or engineers are able to generate 
their models with the assistance of advanced interaction possibilities. Within pure 
engineering tasks, such as the analysis of physical behavior, virtual environments 
only established as post processing unit, in which simulation results can be 
interactively displayed and visualized to get more in depth information about the 
simulation mock up. They do not offer possibilities to change interactively the 
underlying domain, e.g. by manipulating the volume mesh, with an adjustment of 
the simulation in real-time. This is due to the bottleneck implied by pre-
processing and post-processing stages. However, the computer graphics field 
offers several methods and techniques related to visualization, simulation and 
user interaction with 3D meshes. These are used to increase the speed of the 
visualization or transferring processes, as well as to improve the accuracy of the 
simulation results and the user perception of the performance of the virtual 
model. In general, these techniques are based on either geometric 
transformations, topologic transformations or both. 
 
Some techniques related to those are among others: multi-resolution, 
optimization, refinement, remeshing, simplification, mesh morphing, and shape 
editing. Although, some of the proposed techniques are very advanced and give 
valuable procedures for working with meshes such as, progressive transferring, 
real-time editing, view-dependent resolution, level-of-detail, subdivision, free 
shape modeling, etc., there are no methods which allow for real-time mesh 
manipulation keeping quality elements and consistency for conceptual ‘on-the-fly’ 
FE simulations. 
 
Therefore, this work describes an approach which might enable to head towards 
conceptual simulations within the engineering domain (targeting at linear static 
elasticity analysis). Conceptual simulation is a concept based on highly interactive 
environment, computational simulation and real-time visualization. Conceptual 
simulation allows for process decision beyond interactive visualization, this new 
concept allows for interaction within process decision. 



Towards Conceptual Simulations for Linear Elasticity Analysis 

Technical Report 3 

Methodologies are presented for interactive mesh modifications within linear 
static problems based on simplicial meshes, ‘on-the-fly’ feature movements (such 
as through holes), the adaptation of the surrounding volume mesh, fast and 
adaptive mesh refinement techniques, quality measures to ensure the 
consistency and quality of the newly, ‘on-the-fly’ generated elements (this implies 
evaluating local simplicial elements in real-time) and the necessary topological 
operations for unstructured meshes. 
 
The following sketches present the aim of this work. As a first task, the 
conceptual simulation requires user interaction tools. Because of that, a feature 
selection needs to be developed (figure 1). 
 

 
Figure 1: Sketch for feature selection. 

 
Afterwards, the selected feature needs to be moved. Figure 2 shows a sketch of a 
constrain movement of a through hole. The movement is considered constrain, 
because the movement of the hole is restricted to the surface where the feature 
(hole in this sketch) is defined. 

 

 
Figure 2: Sketch for constrain feature movement of one through hole. 

 
In addition, several features could be moved during the same cycle (figure 3). In 
this case the movement applied to one feature must be replied to the other 
features which are part of the movement cycle.  
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Figure 3: Sketch for constrain feature movement of several simultaneous through holes. 

 
The final sketch (figure 4) represents a free movement which can be assimilated 
as an extrusion. The idea of this sketch aims at creating the option of increasing 
or decreasing the dimension of different features of a mesh in order to evaluate 
the influence on the stress field. 

 

 
Figure 4: Sketch for free feature movement. 

 
 
1.1 MOTIVATION 
 
Currently, existing CAD/CAE systems for the analysis and optimization procedure 
of the digital model are crucial during analysis processes. However, there are 
several problems as: 

a) Redefinition or modifications of boundary conditions for derived 
simulations. 
b) Still lack of efficient algorithms and techniques. 
c) Limitations for efficient use (modelling, solver, interaction). 
d) Workflow of design and redesign is significantly influenced. 

 
A typical FEM analysis process is composed of several steps. First, the CAD 
geometry is used as a basis for generating the FE-model (mesh), second the FEM 
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problem is defined (boundary conditions), third the linear system is built and the 
solution of the problem is obtained, and finally the results are visualized (figure 
5) 
 

 
Figure 5: Current FEM Analysis process. 

 
The effort estimated in FEM analysis is: 

i) 40% of workload is needed for the CAD geometry. 
ii) 30% for mesh generation and refinement including the determination of 
boundary conditions 
iii) 20% for the analysis 
iv) 10% for the execution of the simulation. 

 
An additional problem is derived from the separation of the CAD and CAE 
departments which generates a workflow of re-design and re-analysis time 
consuming due to lack of integration. Unfortunately, Virtual Reality is only used 
as visualization tool. Therefore, the aim is to use Virtual Reality as interactive 
analysis tool in order to bridge the gap between CAD and CAE. 
 
1.2 OBJECTIVES AND METHODS 
 
In order to achieve the aim of this work, the efforts were constrained in view of 
the following objectives: 

i) The user can select and manipulate features without making damage on 
the boundary or external topology. 
ii) The surface mesh must be updated on-the-fly while the user makes the 
feature manipulation. 
iii) The changes made on the surface mesh must be transferred to the 
volume mesh in order to solve the new model and get the new results. 
iv) The new results must be displayed to the user and this one must be 
able to start the cycle again. 
v) Since, the application runs on a client/server architecture, it is required 
that some tasks take place on the client side and some other on the server 
side. 

 
The following methods were derived from the previous objectives (see the flow 
chart in figure 6): 

a) Developing a quality measure to evaluate simplicial elements. 
b) Developing mesh manipulation techniques (for surface and volume 
meshes). 
c) Developing a submodel technique for computing the solution of the 
manipulated region. 
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d) Designing an efficient data structure. 
e) Designing a turn around loop integration, in order to integrate the 
conceptual simulation module with the Visualization tool for Virtual Reality. 

 

 
Figure 6: Flow chart of the Feature Manipulation on Surface and Volume Meshes for Conceptual 

Simulations. 
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2. RELATED WORK 
 
 
 

The presented work is related to several technological aspects. Thus an overview 
of the related research efforts is presented in this section. As this work aims at 
interactive, conceptual linear static analysis, the influence of mesh modifications 
in view of unstructured surface meshes (which suits as the basic representation 
within a virtual environment) and derived volume meshes (basis of the linear 
static elasticity simulation) was insvestigated. Although, there are researchers 
who have been working on topics with a close relation to parts of this project, 
there are some topics which have not been covered or which are still subject to 
ongoing research. Given the framework of this project, several areas of 
investigation have been identified: a) mesh manipulations techniques, b) mesh 
quality measures and c) efficient data structures suitable for real-time mesh 
manipulations. The following presents related work categorized on the topics 
mentioned before. 
 
 
2.1 MESH MANIPULATION TECHNIQUES 
 
This project makes use of techniques and methodologies from mesh optimization, 
progressive mesh, and mesh simplification to name few among others, which are 
interesting topics for computer graphic researchers. Several papers have been 
published in these fields and it would be impossible to mention all references, 
however, a sophisticated overview on ongoing work can be found in Bischoff and 
Kobbelt [Bischoff 04] with a compound of subdivision and multiresolution 
techniques, Nealen et al. [Nealen 05] with an overview of deforming models, 
Heckbert [Heckbert 97] with a survey of simplification algorithms, Alliez et al. 
[Alliez 05] with an overview of surface techniques and Frey and George [Frey 00] 
with a general mesh generation coverage.  
 
Within this topic, one can mention, Hope et al. [Hoppe 93] with the idea of 
developing a method for triangular mesh optimization. They sought for reducing 
the number of vertices of the mesh conserving the topological type of the original 
mesh based on: 

i) an energy function minimization which conserves the fidelity of the data 
and 
ii) local simplicial complex transformation (such as: edge collapse, edge 
split and edge swap). 

 
This method initially was formulated for surface reconstruction from unorganized 
points and mesh simplification. 
 
In a further work, Hoppe [Hoppe 96] introduced the Progressive Mesh 
representation, as a new scheme for storing and transmitting arbitrary triangular 
meshes. It is a lossless information method which addressed problems like: mesh 
simplification, level-of-detail approximation, progressive transmission, mesh 
compression and selective refinement. The method was based on the 
minimization of an explicit energy metric which measured the accuracy between 
the simplified mesh and the original, and a sequence of edge collapse 
transformations which permit a continuous-resolution representation conserving 
the geometry and the overall appearance of the mesh. 
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Popovic and Hoppe [Popovic 97] extend the Progressive Mesh (PM) concept to the 
Progressive Simplicial Complex (PSC), which in addition to the PM, permits 
changes over the topology of the mesh and therefore, achieves a better fidelity. 
The PSC can start from an arbitrary triangulation and achieves a base model 
consisting of a single vertex. Garland and Heckbert [Garland 97] used quadric 
error matrices to simplify surfaces, maintaining a surface error approximation. 
They also allowed for contracting vertex pairs which permits topological joining in 
addition to collapsing edges. Wundrak et al. [Wundrak 2006] extended the 
original PM algorithm from triangular to quadrilateral elements. Hence, they also 
extended the edge collapse operation to quads. Furthermore, they presented an 
algorithm which permits applying quadric error metrics for the simplification of 
dynamic meshes. 
 
Another interesting group of activities can be grouped around surface editing. 
Within this topic, Biermann et al. [Biermann 02] develop a set of algorithms 
based on multiresolution subdivision surfaces which allow for cut-and-paste 
operations on surface meshes with a wide variety of blending modes. Suzuki et 
al. [Suzuki 00] proposed an interactive mesh dragging with an adaptive 
remeshing technique. The presented technique permits dragging a part of a 
surface by adaptive local remeshing around the part. This method detects 
geometrical or topological damage and solves those damages based on 
operations like edge collapse, edge split and edge swap. However, this technique 
has drawback caused by the limitations presented in the definitions of a minimum 
and maximum edge length, which force the method to work with homogenous 
meshes. On the other hand, the algorithm converge when an appropriate ratio 
between the minimum and maximum length of the edges is chosen, otherwise, 
the algorithm could go into infinitive loops. 
 
As well as progressive mesh and simplification methods for surfaces, there similar 
work for tetrahedral meshes. Staadt and Gross [Staadt 98] presented the 
implementation of progressively tetrahedralization generated through a sequence 
of edge collapses. They extended the PM scheme from Hoppe, introducing cost 
functions for tetrahedral meshes and tests which guarantee the mesh 
consistency. Pajarola et al. [Pajarola 99] introduced the implant sprays procedure 
combined with the edge collapse error method, providing an efficient mesh 
encoding of progressive tetrahedralization. Kraus and Ertl [Kraus 00] presented a 
method for simplifying nonconvex tetrahedral meshes. They avoided the inversion 
and intersection of the cells because of the edge collapse operation, by a 
preprocessing step which converts nonconvex meshes to convex ones. Chopra 
and Mayer [Chopra 02] proposed a different method instead of the edge collapse 
in order to simplify progressively a tetrahedral mesh; they introduced the 
tetrahedron fusion concept. The disadvantage with the techniques mentioned 
above is the real-time issue, since those techniques use minimization procedures 
which affected the performance of the methods. 
 
 
2.2 QUALITY MEASURES 
 
In general, the quality of a mesh itself depends on the element size and shape. 
However, this quality could have different interpretations, depending on the use 
given to the mesh, for example interpolation, approximation or finite elements 
methods. Shewchuk [Shewchuk 02] explained the relations between mesh 
geometry, interpolations errors and stiffness matrix conditions and he also 
showed some quality measures which permit evaluating the quality of a mesh. 
Ahlmann [Ahlmann 03] presented quality metrics for tetrahedral meshes and 
explained the distinctions between the shape, the size and the element number. 
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In addition, depending on the method used to build the mesh, there are different 
techniques to get one with a good quality. For example to name few among 
others, there are different techniques for Delaunay meshes like, weighted 
Delaunay refinement ([Cheng 03]) or replacing the circumcenters with off-centers 
([Uegoer 05]). Munson [Munson 05] proposed to optimize the quality of mesh 
elements, computing the optimal positions of the vertices for improving the 
average element quality. Liu and Joe [Liu 96] exposed a local refinement 
algorithm based on 8-subtetrahedron subdivision, guaranteeing a good quality of 
the mesh. 
 
In the same way, there are some researchers who have been proposing methods 
for generating tetrahedral meshes with good quality. Alliez et al. [Alliez 05] 
proposed a method called Variational Tetrahedral Meshing which meshes a 3D 
domain with a minimization procedure. This procedure combines 3D Delaunay 
triangulation and vertex relocation, minimizing a global energy over the domain. 
Molino et al. [Molino 03] implemented a tetrahedral mesh generation algorithm, 
producing quality elements and well conditioned for deformable bodies. 
 
 
2.3 DATA STRUCTURE 
 
A robust data structure is always needed for user interaction and real-time 
applications. Even more, when the user interaction or the application itself 
involves dynamically changes over the geometry, topology and simulation results 
of the model. Chen and Akleman [Chen 03] established a framework for the 
theory and practice of 2-manifold (surface) modeling. They also presented some 
concepts, data structures and operations related to mesh modeling. 
 
Some researchers have developed data structures for specific applications. In 
order to reference some examples: Lévy et al. [Lévy 01] developed a data 
structure for rendering complex unstructured grids, De Floriani et al. [Floriani 03] 
presented a survey on data structures for Level-of-Detail models, Hippold and 
Ruenger [Hippold 04] proposed a data management for adaptive hexahedral FEM 
and Tobler and Maierhofer [Tobler 06] developed a data structure for rendering 
and subdivision. 
 
Unfortunately, the available data structures only are efficient for specific tasks, 
though, an efficient data structure for dynamically increasing and decreasing the 
number of vertices and elements without sorting and reallocating memory, and 
keeping the consistency of the mesh with appropriate topological tests, is not 
available. In addition, data structures with information between components 
(vertex, edge, element 2D or element 3D), in order to identify in real-time, 
neighbors of a component and reduce the computation time and the complexity 
of the used algorithms, are not common. 
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3. METHODS 
 
 
 

In this chapter is presented the methodologies which are used for the different 
steps important to this work. The first step aimed at developing a quality 
measure which ensures the consistency and the quality of the mesh in view of 
interactive manipulations, i.e. a quality measure which can evaluate the newly 
generated elements ‘on-the-fly’. The second step implements and develops mesh 
manipulation techniques for surface and volume meshes. The third step solves 
the manipulated part of the mesh through a submodeling method. The next step 
looked for designing an effective data structure which supports the requirements 
of the objectives and the needs on the mesh manipulation. Finally, the 
client/server loop is closed in order to complete the cycle, feature detection, 
feature manipulation, submodeling computation and results re-visualization. 
 
 
3.1 QUALITY MEASURE 
 
This section presents a new quality measure in view of unstructured grid 
generation for 'on-the-fly' mesh modifications within highly interactive 
environments, e.g. virtual reality systems. Aim is to lead real-time/interactive FE 
mesh modifications, such as feature movements, with adaptive mesh 
refinements, and at the same time to keep up and ensure a high quality of newly 
created elements. The measure intends to identify and resolve damages during 
'on-the-fly' mesh modifications, preserves the consistency of the original mesh, 
measures accuracy of the element quality and can be evaluated in real-time. The 
proposed quality measure is based on computing the ratio between height and 
median of simplicial elements, aiming at maintaining and improving the 
conditioning of the stiffness matrix for finite element analysis. Here is showed 
that it can be successfully used for surface and volume FE-mesh real-time 
modifications and that it allows for evaluating ‘on-the-fly’, whether topological 
operations have to be done or not. 
 
An interactive new measure identifies ‘on-the-fly’ ill-shaped simplicial elements 
(triangle=tri and tetrahedron=tet) which might have negative influence on the 
later simulation. It is based on the calculation of the median vector (MV), which 
points directly to the mid point of the opposite edge (tri) resp. triangle median 
point of the opposite face (tet). The computation of the quality measure does not 
require complex mathematical operations. Thus, it allows for evaluating and 
adjusting the quality of elements within real-time constraints. It can be shown 
that the elaborated measure complies with the requirements for a scale invariant, 
well-defined quality measure and preserves the conditioning of the stiffness 
matrix. 
 
The concept for keeping the consistency and quality of the mesh during 
remeshing tasks is based on computing and calculating the measure for simplicial 
elements (simQ-simplexQuality, triQ for triangles and tetQ for tetrahedrons) in 
order to analyze the quality of it and determine if the simplex is subject to 
topological operations. simQ can get values within the closed interval [0,1]. E.g., 
the regular tetrahedron (which has four equilateral triangular faces) gets a tetQ = 
1 and the equilateral triangle gets a triQ = 1. A value equal to zero (0) means 
that the simplex is degenerated, in other words, the vertices of the simplex are 
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either collinear (triangle) or coplanar (tetrahedron), or two or more vertices share 
the same geometric point. Due to its calculation, the presented method has the 
advantage of being completely independent of the geometric characteristics of 
the simplex. It can determine from a topological point of view, if a simplicial 
element is well-shaped or not. That means, the method is independent from how 
big or small the simplex is: independent from the length of the element edges. 
 
As the computation of simQ does not require complex mathematical operations, 
this is an advantage in view of the real time constraints. Figure 7 shows the 
topological nature of tris and tets defined by vertices Vi, edges ei, faces Fi and 
normals Ni in order to derive the computation of simQ. 
 

 

  
a) Triangle a) Tetrahedron 

Figure 7: Topologies of investigated simplicial elements. 
 
3.1.1 Derivation of a Quality Measure 
 
The Vertex Factor (VF) concept is introduced for the derivation of the quality 
measure, which is given for a specific vertex. This section shows the computation 
of VF for given Vertices (defined by Vi). First is calculated the vectors generated 
by the edges which are incident to the given vertex. Those vectors have the tail 
at the given vertex and the head at the opposite vertex of the incident edges. Let 
n be the number of vertices of the given simplex (1). 
 

jinji ≠−∈−= },1,...,0{,ViVjVij  (1) 

 
The Median Vector (MV) is the sum of the vectors generated in (1): 
 

∑
−

≠=

=
1

,0

n

ijj

VijMVi  (2) 

 
The unit vector of MVi is given by: 
 

|| MVi
MViMViu =  (3) 

 
As example, figure 8 shows the calculation of MV0 that corresponds to vertex V0. 
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a) MV0 for a triangle a) MV0 for a tetrahedron 

Figure 8: Definition of the Median Vector (MV0). 
 
In case of a tetrahedron the direction of MV to a given vertex, points directly to 
the triangle median point of the opposite face, see figure 9. The magnitude of the 
vector is three times the magnitude of the Cevian from the vertex Vi to the 
opposite face Fi. For triangles, MV points directly to the mid point of the opposite 
edge and its magnitude is two times the Cevian from Vertex Vi to the opposite 
edge ei. 
 

 
Figure 9: The triangle median point of face F0 is the intersection between the line defined by the 

vector MV0 and the vertex V0, and the plane defined by V1, V2 and V3. 
 
Given this characteristic of the MV vector, VF is derived, in order to qualify the 
shape of a given simplicial element. To calculate VF, the dot product between the 
direction of MV and a unit normal vector ni which for tetrahedrons is given by the 
normal (Ni) of the opposite face to Vi is computed (for triangles is equivalent to 
the normal vector of the opposite edge (nei)). Let >< ba,  denote a bilinear form: 
 

>=< niMViu ,VFi  (4) 

 
In case of triangles, the normal vector of an edge (nei) is perpendicular to the 
corresponding edge, pointing to the outside of it. Let ba× denote the cross 
product, equation (5) allows computing the normal of an edge: 
 

V01e2V20e1V12e0neinei =∧==×= , :where ,  (5) 

 
Normalizing gets: 

 

|| nei
neineiu =  (6) 

 
Figure 10 shows the computed normals used in the calculation of VF for a triagle. 
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Figure 10: Definition of the normal vector of an edge. 

 
Figure 11 shows the behavior and change of MV when vertex V0 is moved freely 
and other vertices of the simplex are fixed. It is possible to see how MV changes 
with regard to the unit normal ni (nei for triangles and Ni for tetrahedra) which 
is finally the main ingredient for the quality measure. 
 

  
a) Triangle performance of MV. b) Tetrahedron performance of MV. 

Figure 11: Graphical representation of the behavior of vector MV when vertex V0 is moved. 
 
The quality measure simQ is finally computed by building the product between 
every VF of the simplicial element (7). 
 

∏
−

=

=
1

0

n

i

VFisimQ  (7) 

 
Where n is the number of vertices of the simplex and simQ is named triQ for 
triangles and tetQ for tetrahedra. 
 
Shewchuk [Shewchuk 02] proposes seven properties which he recommends to 
consider when developing a quality measure. It can be shown that these 
properties are fulfilled for the proposed quality measure. All degenerated element 
have a quality equal to zero, since either the magnitude of MVi is equal to zero or 
the dot product >< niMViu ,  is null in the case of sliver tets. The quality measure is 
scale-invariant, i.e. it gets the same value for two different elements with the 
same shape but different sizes (either area or volume). The quality measure 
achieves a maximum value of one (see Table 1 and Table 2). All inverted 
elements have a negative quality, which can be identify by the sign of >< niMViu , . 
Figures 24 and 25 show that the function simQ(Vi) is smooth and quasiconvex for 
non-inverted elements and the gradient of simQ(Vi) is nonzero for degenerate 
elements. This is due to the fact that, the gradient which is perpendicular to the 
level curve can be calculated and the slope is defined at this point on the surface. 
 
3.1.2 Geometrical Interpretation 
 
The properties of the proposed quality measure (simQ) can also be shown by 
geometrical interpretation. As explained before, MV has the characteristics of 
having a magnitude of two or three times the Cevian from the vertex to the 



Towards Conceptual Simulations for Linear Elasticity Analysis 

Technical Report 14 

opposite mid point of the edge or median face (geometric centroid or center of 
mass) depending on triangle or tetrahedron shape. For simplification, it will show 
the geometrical interpretation on the basis of a triangle. 
 
If it is extended MV0 from V0 to an imaginary vertex and mirror V02, V01 at 
V12 it is constructed an imaginary parallelogram (figure 3a). Completed to a 
parallelogram, the two polygonal diagonals (in this case, MV0 and V12) bisect 
each other, hence, the first confirmation is that MV0 points to the mid point of 
V12 (or e0). As the imaginary parallelogram is formed by two equal triangles 
(the triangle V0V1V2 and its mirrored image) and MV0 goes through the mid 
point of V12, MV0 automatically classifies as a triangle median. Thus MVi has a 
magnitude of two times the triangle median formed by the Cevian from a vertex 
Vi to the min point of the opposite edge ei. 
 
In case of a tetrahedron, the prove is straight forward and similar in construction 
but would require more details which would blur the report unnecessarily. 
However, it is noticed that MVi (for tetrahedra) has a magnitude of three times 
the tetrahedron median formed from the vertex Vi to the median point of the 
opposite triangular face Fi. 
 
Since, the factor VFi is computed by the dot product of MViu (the normalized 
MVi) and a vector perpendicular to either the opposite edge (tri) or face (tet), it 
will be shown that >< niMVi, has a result of two or three time (tri and tet respc.) 
the height or altitude of the simplex. 
 
By definition, the altitude of a simplex is the Cevian which is perpendicular to the 
edge ei or the face Fi (tri and tet respc.) and connects the vertex Vi (see figure 
12a). 
 
 

  
a) Definition of median (m0) and height 

(h0) of a triangle. 
b) Definition of a vector M0 with magnitude m0 and the 

direction of the median. 

Figure 12: Definitions for the geometrical interpretation. 
 
In addition, the bilinear form of a unit vector (ni) and an arbitrary vector results 
in the length of the projection on an extension to the unit vector. Given the 
projection length, the height h0 is calculated for the triangle which is equal to: 
 

>=< ne0M0,0h  (8) 

 
Given (8) and the magnitude of MVi, the VFi factor can be redefined as follows: 
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Where hi is the height, mi the length of the simplex median vector for vertex Vi, 
and α =2 (triangle), α =3 (tetrahedra). Therefore, (7) is equivalent to: 
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=
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n

i mi
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As a special feature for simplicial elements, hi and mi are equal if the vertices of 
the simplex are equidistant and if the volume is not zero (tet). In other 
configuration of vertices, hi is always smaller than mi. Because of this, it is useful 
to use this ratio, in order to measure the quality of a simplex given by (10). 
Another advantage which we can derive by geometric reasoning is that the 
quality measure can be defined by shape and size of the simplex. This might be 
possible if MVi is not normalized. In this case the quality measure would be 

proportional to nhsimQ )(α≅ , where h  is the average height of the simplex. 
Although, the idea was not explored in detail within this work, it could be 
explored in a future work. 
 
3.1.3 Influence on Stiffness Matrix 
 
Since, the manipulation cause changes on the domain because of the topological 
operations, which results from the evaluation of the quality measure, the 
influence of the measure on the stiffness matrix of the linear static system, was 
evaluated. Thus, within this work was investigated the influence of modified 
simplicial, onto the stiffness matrix which provides the results for the simulation. 
From literature is known, that the problem of linear elasticity can be derived from 
a variational formulation which is similar to the variational formulation of the 
Poisson equation (11) using a Galerkin method ([Langtangen 03]). Because of 
that, the Poisson equation is used to explain the influence on the stiffness matrix. 
Considering nR→Ω  the domain and Γ=Ω∂  the boundary, the process aims at 
finding Ru →Ω: , a scalar field defined over Ω  where )( pf  is the internal 

source of the problem and 2∇  is the Laplacian. 
 

)(2 pfu =∇−  (11) 

 
In order to get the weak form, also called the variational formulation of the 
problem, (11) is multiplied by a test function Rv →Ω:  and integrated over the 
domain Ω  (12). 

 

Ω=Ω∇− ∫∫
ΩΩ

vdpfvdu )(2  (12) 
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Equation (14) is the weak form of (11) and results from applying the Green 
Equation (13) to (12) in order to reduce its order. Where >< ba,  denotes a 

bilinear form and ∇  the gradient. 
 

∫∫
ΩΓ

Ω∇∇+∇=Γ>∇< dvuuvdivdv ))((,nu  (13) 

 

Ω=Γ>∇<−Ω∇∇ ∫∫∫
ΩΓΩ

vdpfdvvdu )(,nu  (14) 

 
In order to obtain the Discrete Problem, the basis functions )( piφ  which are 

Lagrange interpolating polynomials, form a space of functions H1 (15) with first 
partial derivate. 
 

)}(),...,(),({ 21
1 pppspanH nφφφ=  (15) 

 
Therefore, the vector field u can be interpolated with the basis functions defined 
in (15) as: 
 

∑=
i

ii pupu )()( φ  (16) 

 
where )( ii puu = , Ω∈ip  for nji ..0, =  and n is the number of nodes. In the 

same way, the test function v  is interpolated as follows: 
 

∑=
j

jj pvpv )()( φ  (17) 

 
Given definitions (16) and (17), the bilinear operator is defined as: 
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and the linear operator as: 
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j
jj plv

fvdvl

))((

)(

φ
 (19) 

 
Finally, the discrete form is given by: 
 

∑∑ =
j

jj
ij

jiji plvppavu ))(())()(( φφφ  (20) 
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In order to establish the linear system, the following notation is adopted. If 
))()(( ppaa jiij φφ=  and ))(( pll jj φ= , therefore: 

 

0,
0,,

,,

>=−<
>=<−><
>>=<<

vlAu
vlvAu

vlvAu
 (21) 

 

Since, this is valid for every 1Hv∈  then 
 

lAu =  (22) 
 

where ∫
Ω

Ω∇∇== dppa jiij )()( φφA  and ∑=
i

ii puu )(φ . For a domain divided into 

elements 
 

∑ ∫
Ω

Ω∇∇=
elms

elmji

elm

dpp )()( φφA  (23) 

 
Figure 13 presents some definitions which are used for calculating the gradient 
for a triangle and a tetrahedron. 
 

 

  
a) Triangle definitions. b) Tetrahedron definitions. 

Figure 13: Definitions for calculating the gradient vector. 
 
The following example presents the stiffness matrix for a triangle linear element. 
The first step aims at calculating the gradient vector ( )( piφ∇ ) of the basis 

function for every vertex of the triangle. If 0)( ≠∇ piφ , the gradient is 

perpendicular to the level curve through ),( 00 yx  (if ),( yxfz = ), or perpendicular 

to the surface level (for tetrahedron element) through ),,( 000 zyx  (if 

0),,( =zyxF ). Given the characteristic of the basis functions for first order 

Lagrange polynomials (P1 Elements), e.g. the basis function 0φ  (for vertex V0) 

gets values: 1)0(0 =Vφ  and 0)2()1( 00 == VV φφ , the gradient vector is defined by 

the slope and the direction as follows: 
 

i
i h

1|| =∇φ , and for triangles 
|| i

i e
i

i
enne ×

==∇φ  and tetrahedrons Ni=∇ iφ  (24) 

 
With equations (23) and (24), the stiffness matrix for a triangular linear element 
is: 
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As, the stiffness matrix is dependent on the gradient, and this is affected by the 
slope, which was shown is the inverse of the height; it is possible to derive that a 
small height will generate a bigger value in the diagonal of the matrix and as a 
consequence a bigger eigenvalue. This is due to the fact that the sum of the 
eigenvalues is equal to the trace of the matrix (26) which is the sum of the 
diagonal elements. 
 

tr(A)
i

=∑
=

1-n

i
0
λ  (26) 

 
According to 3.1.2, the quality measure can be expressed as (10), and therefore, 
the quality measure uses the height of the simplex in order to compute the 
quality which directly influences the stiffness matrix. On the other hand, equation 
10 shows an elegant ratio, since; this ratio is smaller when the element is ill-
shaped, due to the difference between height and median, which is bigger. 
 
 
3.2 MESH MANIPULATION TECHNIQUES 
 
Based on the above explained quality measure for the identification of ill-shaped 
elements, this section shows the strategies for the topological operations during 
(re) meshing tasks. Here, the mesh manipulation techniques which are 
implemented mainly based on unstructured triangular (display within the virtual 
environment) and tetrahedral meshes (simulation model). Different mesh 
manipulation techniques ranging from simple selection mechanism to complex 
feature detection and modification techniques have been implemented. 
 
3.2.1 Geometric and Topologic Transformations 
 
 
The aim targeted at the manipulation and movements of features such as through 
holes. Therefore, based on a representation of the pure 3D simulation model, it 
was investigated: feature detection and selection methods, feature movements 
based on constrained 3D interactive manipulations, movements of features with 
adaptive refinements on the surface mesh, its instantiation into the volume mesh 
and topological operations needed to overcome ill-shaped elements. As 
mentioned above, re-meshing tasks might jeopardize the consistency and quality 
of the mesh.  
 
The different processes presented in this work deal with geometric and topologic 
transformations on surface and volume meshes. Hence, the applied 
transformations must conserve external topology and the boundary conditions 
(for the FEM simulation) of the mesh. Due to the nature of topologic operations, 
the here presented geometric transformations aim at changing geometric 
information, i.e. they cause a change of vertex information at the same time 
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trying to keep the connectivity (topology) (e.g. rigid transformations such as pure 
translations and rotations). On the other hand, topologic transformations create 
new configurations of connectivity between different vertices, creating or deleting 
vertices. 
 
Figure 14 presents examples which show three different cases: a) a geometric 
transformation of vertices V1 and V3, b) a topologic transformation of the 
triangles T1 and T2 and c) a geometric and topologic transformation of the 
vertices V1 and V3 and the triangles T1 and T2. 

 
V1

V4

V3

V2 V4V2

V1'

V3'

T1

T2

T1'

T2'

T1 = {V1,V2,V4}
T2 = {V3,V4,V2}

T1' = {V1',V2,V4}
T2' = {V3',V4,V2}  

V1

V4

V3

V2

V1

V4

V3

V2

T1 = {V1,V2,V4}
T2 = {V3,V4,V2}

T3 = {V1,V2,V3}
T4 = {V3,V4,V1}

T1

T2

T3 T4

 
a) Geometric transformation. b) Topologic transformation. 

V1

V4

V3

V2

T1 = {V1,V2,V4}
T2 = {V3,V4,V2}

T3 = {V1',V2,V3'}
T4 = {V3',V4,V1'}

T1

T2

V4V2

V1'

V3'

T3 T4

 
c) Geometric and topologic transformation. 

Figure 14: Examples of geometric and topologic transformation. 
 
If a geometric transformation is applied, the original elements (in this case, 
triangles) are kept. As soon as a topologic transformation is applied, new 
elements are created and the old ones are deleted. 
 
3.2.2 Topological Operations during Mesh Manipulations 
 
The implemented techniques for mesh manipulation of the surface/volume mesh 
can be classified as feature dragging or surface/volume re-meshing techniques. 
This process consists in moving vertices of selected simplicial elements causing 
mesh collapse/split operations in a way that allows for keeping the consistency of 
the mesh using local topological operations. Those operations deal with adapting 
ill-shaped areas of the given simplicial mesh to a well-shaped area of it. The idea 
aims at computing the quality of the affected elements during a user defined 
movement of a group of vertices and performing topological operations for those 
elements with a low quality (a quality lower than a given threshold). The ill-
shaped simplexes are then modified by operations such as edge collapse, edge 
split, tetrahedron collapse-face swap which are applied appropriately, depending 
on the damage or degeneracy of the elements in question. With the above 
mentioned geometric and topologic transformations, the smallest and biggest 
edges (as well as the sliver tetrahedron) are adapted to maintain a mesh with a 
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good quality and preserves the consistency for the newly triggered simulation 
run. 
 
As mentioned above, this approach is based on the computation of the simplicial 
quality measure (simQ) explained in 3.1 for each element. For the sake of 
simplicity, it is assumed that one vertex is moved, hence, the degeneracies are 
caused around that vertex. Because of that, the incident simplexes to that vertex 
(start(Vi)) are the candidates for a topological operation (see figure 15). 
Therefore, simQ must be computed for every element which belongs to start(Vi). 
 
 

 

 
 

a) Incident triangles to Vi. b) Incident tetrahedra to Vi. 

Figure 15: Start of a simplexes around vertex Vi (start(Vi)). 
 
In calculating simQ any ill-shaped simplex belonging to start(Vi) and its indicator 
for a damage is identified, the appropriate topological operation for solving that 
damage is defined afterwards. 
 
The following process presents a real-time method for adapting ill-shaped areas 
of simplicial meshes to well-shaped areas: The first step consists in finding the 
smallest Vector Factor (VFs) for a minimal simQ (27) (which might be lower than 
a threshold). According to (9) all VFi’s are based on the ratio between the height 
and the median to a given vertex Vi, therefore, a small ratio means a smaller 
height and/or a bigger median. This is the case if the difference between the 
smallest edges and the biggest edge incident to Vi, is bigger and thus, the 
damage (degeneracy) of the simplex depends on the smallest or biggest edge. 
 

1...0 ,}min{ −== niVFiVFs  (27) 

 
where n is the number of vertices of the simplex. However, as a general 
degeneracy could be caused by smaller edges, bigger edges or in the case of 
tetrahedral meshes, sliver tetrahedrons, it is needed to identify the different 
cases. Therefore, the length average of the edges for the simplex is computed 
(28). 
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where k is the number of edges of the simplex, three for triangles and six for 
tetrahedra. In addition, the shortest (29) and longest (30) edge incident to the 
vertex Vi have to be identified: 
 

ijnjiVijdS ≠∧−==  1...0, |},min{|  (29) 
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ijnjiVijdL ≠∧−==  1..0, ,|}max{|  (30) 

 
where n is the number of vertices of the simplex. In order to define the 
appropriate topological operation (edge split or edge collapse) or a combination of 
topological operations (only for tetrahedra, tetrahedron collapse-face swap), the 
factors SPL (31) and COL (32) are computed. These factors allow identifying if the 
simplex has a bad quality because of a shorter, longer or a degeneracy as a sliver 
tetrahedron which has two large dihedral angles and its four vertices are almost 
forming a plane. Therefore, if the longest edge (30) is much bigger than the 
average, the factor SPL should be smaller than COL, hence a split operation must 
be performed. 
 

L

A

d
dSPL =  (31) 

 

A

S

d
dCOL =  (32) 

 
In case of an identification of a sliver tetrahedron the absolute value of the 
difference between the two factors SPL and COL has to be calculated. If inequality 
(33) is satisfied, the combined topological operation tetrahedron collapse-face 
swap solves the degeneracy (figure 16). This can be identified due to the 
difference between the longest and shortest edges which are quite similar (typical 
for well-shaped elements), but the tetrahedron has a bad quality. 
 

5
2|| thresholdCOLSPL −<+  (33) 

 

 

 
 

  
a) Ill-shaped tetrahedron, because 

of a sliver tetrahedron.  
b) Sliver tetrahedron formed by 
the vertices V0, V1, V2 and V3. 

c) Combination of a 
tetrahedron collapse and a 

face swap operation 
Figure 16: Example of a tetrahedron collapse-face swap operation. 

 
The two following excluding inequalities determine if an edge split or edge 
collapse operation has to be applied. If inequality (34) is satisfied, an edge split 
operation must be performed (figure 17 presents an example of an edge split 
operation): 
 

COLSPL <  (34) 
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a) Ill-shaped triangle, because of the edge V01. 

The edge is too long for the conformed start(V0). 
b) Well-shaped triangle after an addition of a 
vertex, because of the edge split operation.  

  
c) Ill-shaped tetrahedron, because of a too large 

edge (V01). 
d) Edge split operation applied between the 

vertices V0 and V1. 
Figure 17: Example of an edge split operation. 

 
Otherwise inequality (35) is satisfied and an edge collapse is performed. Figure 
18 shows an example of an edge collapse operation. 

 

SPLCOL <  (35) 

 

  
a) Ill-shaped triangles, because of the edge V01. 
The edge is too short for the conformed start(V0) 

b) Well-shaped triangles after an edge removing, 
because of the edge collapse operation. 

 

 
 
 

 
 

c) Ill-shaped tetrahedra, 
because of a too short edge 

(V01). 

d) Tetrahedra around the edge 
V01 which are collapsed.  

e) Generated tetrahedra after 
an edge collapse operation.  

Figure 18: Example of an edge collapse operation. 
 
After the application of the topological operation, the new generated simplexes 
should be processed again as the new elements might also be ill-shaped. 
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3.3 SUBMODELING 
 
Submodeling is a technique for computing the solution of a region of interest 
which belongs to a model with a global solution. This technique was developed for 
linear static elasticity problem and it is totally transparent to the user, who does 
not detect that the new solution was computed locally. The techniques complies 
with the real-time requirement and is used for mesh refinement operations in 
order to compute new solutions from global to local analysis and from coarse to 
fine meshes. 
 
This section describes an approach to achieve real-time isotropic linear static 
elasticity computation based on a global solution and performing the computation 
on an isolated mesh. The isolated mesh corresponds to the part of the mesh 
which was manipulated. This is possible if the essential boundary conditions of 
the isolated mesh are derived as the nodal deformation solution given by the 
global solution. Essential boundary conditions are the boundary conditions of the 
Finite Element problem which need to be defined in order to achieve a solution of 
the system, in order to avoid singularities. The essential boundary conditions are 
defined as displacements over the boundary of the mesh. 
 
3.3.1 Isotropic Linear Static Elasticity Analysis 
 
The theory of Linear Elasticity is based on Solid Continuum Mechanics. The 
following formulation is adopted from [Langtangen 03]. The analysis is based on 
the solution of the Navier equation modeling the linear elasticity problem which is 
the Newton’s second law (36). 
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The term in the left-hand side represents the acceleration of the medium, on the 
right-hand side the first term represents internal forces and second term 
represents external or body forces. From the Solid Continuum Mechanics, (36) 
models a solid domain immerses in a fluid with a defined acceleration, affected by 
external forces (e.g. gravity) and internal forces in the medium due to stresses. 
For the linear static elasticity analysis the acceleration of the medium term can be 
neglected, therefore the Newton’s low can be simplify as (37). 
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Equation (37) governs the problem, where the aim is to calculate the stress 
tensor represented by rsσ  with 6 unknown values, and the density ρ  and the 

external forces rb  which are the known values. In order to solve the problem, 
additional information is used to complete the system, such as the material 
properties. When the linear static problem is solved for elastic materials, a 
relation between the stresses and the deformations (u) is given by the strain 
tensor (38). 
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The Hooke’s generalized law (39) highlights the relation between stresses and 
strain. 
 

rsrs
q

q
rs x

u
μεδλσ 2+
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∂

=  (39) 

 
where λ  and μ  are Lame’s elasticity constants and rsδ  the Kronecker delta, 

which represents the values of an Identity matrix. Given the previous definitions, 
the stress tensor can be expressed as (40). 
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Finally, the stress tensor definition (40) is integrated within the equation of 
Newton’s law as follows: 
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The Finite Element Method is used to create the linear system cKu =  and solve 
the linear static elasticity problem and getting. The solution of the model is the 
displacement field, which is used to compute the stress and strain tensor at every 
node. The first step aims at generating an approximation of the displacement field 
by means of interpolation basis functions N  (42). Where n is the total number of 
nodes. 
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In order to reduce the order of the problem and to obtain a variational 
formulation, the Galerkin Method is applied to (43). The process is shown first for 
stress component. 
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Equation (44) shows the corresponding formulation for every two joining nodes 

ijK . This equation is getting by means of replacing the stress tensor by (40) in 

(43). 
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The right-hand side of the equation of the Newton’s law, which represents the 
external forces term, is defined as follows (45): 
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Given the equations (44) and (45), the linear system can be established. In order 
to solve the problem, boundary conditions must be defined. Those boundary 
conditions are divided into essential boundary conditions and natural boundary 
conditions. The essential boundary conditions are prescribed displacements which 
are defined at some nodes of the meshed domain. The natural boundary 
conditions are considered external pressure over the surface of the domain. 
 
3.3.2 Submodeling Solver 
 
As was mentioned before, the part of the mesh where the manipulation was 
performed is isolated and the nodal global displacement solution is used as 
essential boundary conditions in the interface between the isolated region and the 
global model. Figure 19 shows the selection of the part of the mesh of interest in 
order to apply the submodeling technique. 
 

 
Figure 19: The region of the mesh of interest is selected. 

 
Given that, although the model is isolated and only part of the mesh participate 
within the new computation, the whole model is considered because the interface 
between the whole mesh and the submodel is governed by the displacements of 
the global mesh at the interface which will affect the internal solution of the 
submodel. Figure 20 presents an isolated region where the submodeling 
technique is applied. 
 

 
Figure 20: The region of interest is isolated. 

 
 
3.4 DATA STRUCTURE DESIGN 
 
Given the context of the manipulations, an efficient time computation and 
consuming, and robust data structure was developed for surface (triangular) and 
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volume (tetrahedral) meshes. The data structure permits dynamically increasing 
and decreasing the number of vertices and elements without sorting and 
reallocating memory, and keeping the consistency of the mesh with appropriate 
topological tests. Additionally, because of the nature of the topological operations 
(for the mesh manipulations), whole access from a component (vertex, edge, 
element 2D or element 3D) to another component was given, in order to identify 
in real-time, neighbors of a component and reduce the computation time and the 
complexity of the used algorithms. This direct access permits also adding 
“intelligence” to pure meshes with very low complexity algorithms which allows 
obtaining the boundary of surface or volume meshes up-to-date (considering the 
different changes caused by the feature manipulations) and on-the-fly, as well as 
algorithms for defining and grouping elements which can heuristically belong to a 
surface definition. 
 
The data structure was developed in order to comply with the following 
constrains:  

a) Accessing information in real-time, in order to avoid data searching. 
b) Connecting information between the different elements (1D, 2D and 
3D). 
c) Updating information while the surface or volume mesh is changing. 
d) Providing a data structure which allows adding and removing 
information without sorting. 
e) Designing a data structure inexpensive (in terms of computing time) in 
the process of filling and updating. 
f) Designing a data structure which supports surface elements (triangles 
and quadrangles) and volume elements (tetrahedra and hexahedrons).  

 
Figure 21 shows a chart with the designed data structure architecture. 
 

 
Figure 21: Design of the data structure. 

 
Advantages of the designed data structure: 

i) It performs computations and component relations while the information 
of vertices and elements are stored. In other words, it is not needed an 
additional time or computing process in order to fill the data structure. 
ii) It works with indices (integers). There are only two fields which work 
with floats, the Vertices and the Normal Vectors. 
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iii) It permits to create and to delete vertices or elements on-the-fly. 
Since, it flags the killed elements and removes the links of the killed 
information (vertex or element). It does not deal with memory reallocation 
in order to fill a space left by a killed information. 
iv) It works with memory buffers which allow adding information without 
doing memory petitions very often. 
v) The additional information (additional to vertices and elements) allows 
for accessing to every required field on-the-fly, as everything is 
connected. 
vi) Because of v), the data structure is able to make faster computations 
of: a) getting the surface boundary, b) getting the volume boundary, c) 
creating a special type of CAD IDs (given a heuristic), among others. 

 
3.5 TURN AROUND LOOP INTEGRATION 
 
The architecture of the Visualization tool used for the Conceptual Simulation 
process is described in figure 22. This tool is used for interactive exploration of 
data in Virtual and Augmented Reality. This architecture has the advantage of 
being module-based, thus, several modules can be added to it in order to 
increase the services. 
 

 
Figure 22: Architecture of the Visualization tool used for the Conceptual Simulation process. 

 
The Conceptual Simulation was created as a module which was dived into 
submodules, the client and the server submodule. The client submodule deals 
with the surface mesh manipulation and the user interactions. The server 
submodule deals with the volume mesh instantiation and the submodeling solver. 
The turn around loop integration looks for creating a continued process where a 
user can interact with the model, change the model and retrieve information of 
the new results from the FEM solver. Figure 23 shows the flow chart of this 
process. 
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Figure 23. Turn around loop integration diagram. 
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4. RESULTS 
 
 
 

This paragraph presents several results which show the behavior and 
performance of the proposed quality measure, the performance of the topological 
operations and the results of the manipulation. For quality measure results, first 
is shown the functional behavior of the measure in view of moving single vertices 
and second is presented a benchmark of comparisons of the proposed quality 
measure with measure available within literature. For the topological operations, 
statistics from the performed operations during manipulations are shown in order 
to present the reliability of the process. Last but not least, it is showed the first 
results of an application for real-time manipulations based on geometric and 
topologic operations which are supported by the proposed methods. 
 
 
4.1 QUALITY MEASURE PERFORMANCE 
 
In order to present the global performance of tetQ, the following figures (figures 
24 and 25) show the behavior of tetQ(Vi) for 2 degrees of freedom movements in 
x-,y-direction of one of the vertices (Vi) with the z coordinate fixed at height h. 
We assume a regular shape of the tetrahedron with the constraint x-/y-
movement of the upper vertex. 
 

 

 

 

  

a) Grid representation. b) Wireframe representation. 
c) Contour 

representation. 

Figure 24: Performance of tetQ, with the regular tetrahedron on the background. 
 

Figure 24 shows the behavior of the quality measure as function of different 
positions caused by the upper vertex of the regular tetrahedron sketched in the 
diagrams. From figure 24a, it is possible to conclude that in case of a regular 
tetrahedron tetQ gets the maximum value tetQ=1.0. The quality gets worse as 
soon as the vertex leaves the circumsphere of the tet forming an element of low 
quality. 
 
In order to present the behavior of triQ, figure 25 shows a diagram for triQ(Vi) in 
which the equilateral triangle is sketched. From figure 25a,c one can conclude 
that as soon as the moved vertex (upper vertex with fixed edge at bottom line of 
diagram) is leaving its position with ideal quality measure value (triQ(Vi)=1), the 
triangle starts degenerating and might be candidate to topological operations 
such as edge collapse or split (dependent on the user defined threshold of the 
quality measure). As an additional observation, figure 25c shows that the quality 
of the triangle decreases in a lower ratio when angles of the triangle tend to be 
smaller. On the other hand when the angles of the triangle tend to be bigger, the 
quality decreases faster. This performance is according to the FE-mesh literature, 
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where several authors have been exposed that the smaller angles are better for 
simulations (stiffness matrix conditioning) than the bigger angles. 
 

 

 

 

  
a) Grid representation. b) Wireframe representation. 

c) Contour 
representation. 

Figure 25: Graphic for the function of triQ with the equilateral triangle on the background. 
 
 
4.2 QUALITY MEASURE BENCHMARKING 
 
In this section is presented a comparison of the results derived from the proposed 
measure with currently available quality measures in literature [Shewchuk 02], 
which are summarized in table 1. The proposed quality measure was 
benchmarked in view of five groups of ill shaped tetrahedra ([Ahlmann 03]). 
 
The group of bad shaped tetrahedra is composed of the so-called tetrahedra: 
Needle, Wedge, Spindle, Sliver and Cap (figure 26). A tetrahedron Needle is a 
tetrahedron which has small dihedral angles and some edges are significantly 
smaller than the other ones (figure 26a). A Wedge tetrahedron is a tetrahedron 
with one edge much smaller than its others (figure 26b). A tetrahedron which has 
only one large dihedral angle or one long edge and one small edge is called 
Spindle (figure 26c). The Sliver tetrahedron has two large dihedral angles and its 
four vertices are almost forming a plane (figure 26d). A Cap tetrahedron has 
three large dihedral angles, and therefore one of the vertices is very close to the 
triangle formed by the other three (figure 26e). 
 

 

 
  

a) Needle b) Wedge c) Spindle 

   
d) Sliver e) Cap f) Regular 

Figure 26: Tetrahedra used for the comparison in the table 1. 
 
The results are compared with quality measures described by Shewchuk 
[Shewchuk 02], which from our point of view, are measures which might be 
computed on-the-fly. A quality measure that is based on the calculation of 
eigenvalues of the stiffness matrix causes high overhead during the computation 
of the solution of the characteristical polynomial. Therefore, it is not useful for on-
the-fly evaluations in highly interactive environments with thousands of elements. 
Quality measures proposed by Shewchunk [Shewchuk 02] need to be pre-
processed and post-processed. Those measures have to be adapted in order to 
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avoid possibly undefined results (pre-processing stage) and the measures have to 
be scaled afterwards in order to compare its results with a reference tetrahedron 
of good quality, e.g. the regular tetrahedron. The proposed quality measure is 
independent of any pre- or post-processing process and does not need any 
reference tetrahedron/simplex. 
 
The results of the scale-invariant and the size-shape quality measure from 
Shewchuk can not be interpreted without a comparison. However, the quality 
measure proposed in this work is bound between 0 and 1, therefore, it is easy to 
interpret and it allows for working with heuristics in order to get a specific quality 
of a simplicial element.  
 
Given the results of table 1, obtained during benchmarking and comparing these 
with the results of the different quality measures evaluated for known ill shaped 
tetrahedra, it is possible to conclude that, the performance of the proposed 
quality measure behaves towards expectations. As shown in table 1, the quality 
measure would allow for an earlier identification of ill shaped elements and might 
prevent inconsistencies in the mesh. E.g. the sliver element has lower values, 
therefore a lower quality and it will be easily identified in view of topological 
operations. 
 

Table 1: Benchmarking of the proposed quality measures with quality measure available in the 
literature for tetrahedral elements. 

Tetrahedron 
Group 

tetQuality 
(tetQ) 

Scale-
invariant 

Shewchuk 

Size-
Shape 

Shewchuk 

Quality 
Mes.  

Knupp 

Quality Mes. 
Parthasarathy 

Quality 
Mes. 

Cougny 
Needle 0.0286512 0.272439 

(0.5282) 
0.176615 
(0.4270) 

0.209519 0.0182342 0.0332488 

Wedge 0.1084100 0.255745 
(0.4958) 

0.162334 
(0.3924) 

0.364519 0.2413200 0.0237305 

Spindle 0.0811974 0.331845 
(0.6434) 

0.229746 
(0.5554) 

0.437571 0.0662913 0.0952045 

Sliver 0.0169825 0.252102 
(0.4888) 

0.159258 
(0.3850) 

0.360994 0.1767770 0.0219825 

Cap 0.0286512 0.168260 
(0.3262) 

0.092891 
(0.2245) 

0.209519 0.1000000 0.0025442 

Regular 1.00 0.515747 
(1.0000) 

0.413602 
(1.0000) 

1.00 1.00 1.00 

 
For completion, figure 27 shows a classification of ill-shaped triangles. Those 
triangles are called, Cap, Needle and a combination of Needle and Cap. A Cap 
triangle can be identified because the triangle has one angle close to 180° (figure 
27a). A Needle triangle has two edges much longer than the other (figure 27c). 
The Needle-Cap is a combination of the previous two (figure 27b).  
 

  
a) Cap b) Needle-Cap 

 

  
c) Needle d) Equilateral 

Figure 27: Triangles used for the comparison in the table 2. 
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The triangles of figure 27 were used to compute the quality measures exposed in 
the table 2, where the quality measure proposed in this paper is compared with 
quality measures available in the literature (see above). 
 

Table 2: Benchmarking of the proposed quality measures with quality measure available in the 
literature for triangular elements. 

Tetrahedron 
Group 

triQuality 
(triQ) 

Scale-
invariant 

Shewchuk 

Scale-
invariant 
smooth 

Shewchuk 

Quality 
Mes.  

Bhatia 

Quality 
Mes. 

Aspect 
Ratio 

Quality 
Mes. 

Radius 
Ratio 

Cap 0.0791896 0.0674137 
(0.4409) 

0.224804 
(0.3927) 

0.246154 0.125000 30.217100 

Needle-Cap 0.0435764 0.0595504 
(0.3894) 

0.197970 
(0.3458) 

0.203424 0.125000 58.313700 

Needle 0.1503380 0.0832451 
(0.5444) 

0.280063 
(0.4893) 

0.342282 0.232877 0.0605143 

Equilateral 1.00 0.1528980 
(1.0000) 

0.572357 
(1.0000) 

1.00 1.00 5.3333300 

 
 
4.3 MANIPULTION STATISTICS 
 
The following tables (3, 4, 5, and 6) present some statistics results of the 
topological 3D mesh editing operations, where one can see the evaluation 
performance in real-time. Since, the topological operations are made locally, the 
elements and the vertices affected belong only to a part of the mesh (here 
Surface 1, Surface 2). Table 3 shows the difference between the number of 
vertices and elements in the initial stage and the final stage having finalized the 
manipulation of the triangular front/back surfaces (moving a through hole - figure 
31) of the domain. 

 
Table 3: Number of affected elements and vertices (surface). 

 Num Local Elemts Num Local Verts 
Surface 1   

Initial 252 164 
After 276 176 

Surface 2   
Initial 738 419 
After 752 426 

 
Table 4 shows the number of split and collapse operations performed during the 
manipulation of the surface mesh. It is not shown the time in this table, because 
every operation was performed in less than 1 ms. 
 

Table 4: Number of topological operations performed (surface). 
Num Split Op 153 
Num Coll Op 162 

 
The topological operations applied on tetrahedral meshes have higher complexity 
because of the multiple topological relations between elements. For example, for 
a triangular mesh, every edge has a maximum of two incident elements, however 
for a tetrahedral mesh, an edge has much more. Some of the study examples 
have up to 16 incident elements to and edge. 
 
This complexity consumes more time in order to find the new topological relation 
of the elements which will replace the degenerated ones. Though the computation 
of the quality measure and the appropriate decision  (without performing the 
topological operation) for the topological operation are still performed in less than 
1 ms. It was achieve manipulations (quality measure + decision + topological 
operations) in less than 20 ms.  
 
Table 5 shows primary results for a tetrahedral mesh manipulation. 
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Table 5: Number of operations and time (volume). 

Cycle Item Split Collapse 
1 Elements 6 12 
 Time 16ms 16ms 
2 Elements 3 0 
 Time 15ms 0ms 
3 Elements 6 12 
 Time 16ms 15ms 

 
Table 6 indicates the number of new vertices and elements created during the 
manipulation. 

 
Table 6: Number affected elements and vertices (volume). 

 Num Local 
Elemts 

Num Local 
Verts 

Initial 770 546 
After 778 550 

 
 
4.4 CONCEPTUAL SIMULATION 
 
4.4.1 Feature Detection 
 
The figure 28 shows a model with different colors, the green hole is the 
highlighting process and the red hole is the selection process. 
 

 
Figure 28: Feature detection. 

 
4.4.2 Face Group Selection 
 
The figure 29 shows an example on how can be selected a group of faces. With 
this application it is possible to retrieve information of vertex and element labels 
of the selected group of faces. 
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Figure 29: Face group selection. 

 
4.4.3 Feature Movement Application 
 
Here is presented an application which was developed in this context. It aims at 
interactive, real-time linear static elasticity analysis, in which one can seen the 
effect of moving features in the domain on the resulting stress field by re-
generating a new volume mesh around the area of interest. Figure 30 shows the 
initial step for the feature movement within a virtual reality system. A through 
hole is selected and it is started a dragging procedure with a 6DOF interactive 
input device. 
 

 
Figure 30: Feature movement, initial step. 

 
Figure 31 shows how the through hole is dragged on the surface and re-meshing 
starts while dragging. 
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Figure 31: Feature movement, middle step. 

 
Figure 32, the through hole was dragged to the left and the top and the volume 
mesh has been re-instantiated. 
 

 
Figure 32: Feature movement, final step. 
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5. CONCLUSIONS AND FUTURE WORK 
 
 
 
 

Within this work was proposed a new methodology which might help one heading 
towards conceptual simulations. It aims at establishing a direct link of a virtual 
environment with a linear static elasticity analysis targeting real-time FE analysis 
in the context of conceptual simulations. A new quality measure was developed in 
order to help one in evaluating 3D volume mesh modifications during on-the-fly 
mesh manipulations such as moving through holes. The proposed quality 
measure offers the possibility to keep up the quality of the measure while 
performing topological operations during remeshing tasks. It was shown that the 
measure has also a good behavior in view of the stiffness matrix which suits as 
basis for the calculation of the stress field.  
 
The coupling to the simulation was made in order to re-simulate the parts of the 
model which have been manipulated. The given approach is a submodeling 
technique which is integrated with the feature manipulation, in order to allow for 
fast and precise computation of linear static elasticity problems. The technique is 
totally transparent to the user who can manipulate the mesh and see how the 
stress field changes in real-time. This approach allows just calculating a subpart 
of the model avoiding long model preparation and re-simulation running over the 
whole model. 
 
As a future work, we will study several interaction techniques which can perform 
mesh modifications in addition to the feature movements. For example, it might 
interesting to implement a free shape modeling with the aim an adoption of free 
basis domain. Sketching free form profile surfaces over the domain could allow us 
to define additional changes to the domain, e.g. rounding off edges, extending 
beams, etc. We aim at a re-simulation rather than pure animation providing us an 
immediate feedback on the influence of the modification onto the stress field. 
 
On the other hand, it would be also interesting coupling the feature manipulation 
with additional physical models like heat transfer or fluid dynamics, a coupling to 
CAD transformations is a challenge which might offer further space for research 
activities and which can only be solved by long term research efforts. 
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