• English
  • Deutsch
  • Log In
    Password Login
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Decision Support by Interpretable Machine Learning in Acoustic Emission Based Cutting Tool Wear Prediction
 
  • Details
  • Full
Options
2021
Conference Paper
Titel

Decision Support by Interpretable Machine Learning in Acoustic Emission Based Cutting Tool Wear Prediction

Abstract
Predictive maintenance is a prominent and active field for applications of machine learning in industry in recent years. The health and wear of equipment directly influences the productivity and quality of the production process. Especially in ultra-precision manufacturing, tool wear has a major impact on the achievable quality while the wear itself cannot be measured directly in-process. In this paper we present a machine learning-based classification of the tool wear in-process using acoustic emission sensors. To increase the interpretability of the process – to open the black box model – we apply a feature importance analysis and use the obtained feature importances to provide augmented data representations to the users. These representations increase the transparency of the model's decision process and assist the users in validating the model's decisions and gain new insight into the phenomenon of tool wear itself.
Author(s)
Schmetz, Arno
Fraunhofer-Institut für Produktionstechnologie IPT
Vahl, Christopher
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI
Zhen, Z.
Fraunhofer-Institut für Produktionstechnologie IPT
Reibert, Daniel
Fraunhofer-Institut für Produktionstechnologie IPT
Mayer, Sebastian
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI
Zontar, Daniel
Fraunhofer-Institut für Produktionstechnologie IPT
Garcke, Jochen
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI
Brecher, Christian
Fraunhofer-Institut für Produktionstechnologie IPT
Hauptwerk
IEEE International Conference on Industrial Engineering and Engineering Management, IEEM 2021
Konferenz
International Conference on Industrial Engineering and Engineering Management 2021
Thumbnail Image
DOI
10.1109/IEEM50564.2021.9673044
Language
English
google-scholar
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI
Fraunhofer-Institut für Produktionstechnologie IPT
Tags
  • Productivity

  • Industries

  • Engineering managemen...

  • Machine learning

  • Acoustic emission

  • Industrial engineerin...

  • Sensors

  • Predictive maintenanc...

  • condition monitoring

  • interpretable ML

  • explianable AI

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022