• English
  • Deutsch
  • Log In
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Classification in high-dimensional spectral data: Accuracy vs. interpretability vs. model size
 
  • Details
  • Full
Options
2014
  • Zeitschriftenaufsatz

Titel

Classification in high-dimensional spectral data: Accuracy vs. interpretability vs. model size

Abstract
Against the background of classification in data mining tasks typically various aspects of accuracy, and often also of model size are considered so far. The aspect of interpretability is just beginning to gain general attention. This paper evaluates all three of these. aspects within the context of several computational intelligence based paradigms for high-dimensional spectral classification of data acquired by hyperspectral imaging and Raman spectroscopy. It is focused on state-of-the-art paradigms of a number of different concepts, such as prototype based, kernel based, and support vector based approaches. Since the application point of view is emphasized, three real-world datasets are the basis of the presented study.
Author(s)
Backhaus, Andreas
Seiffert, Udo
Zeitschrift
Neurocomputing
Thumbnail Image
DOI
10.1016/j.neucom.2013.09.048
Language
Englisch
google-scholar
IFF
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022