• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Uncovering Inconsistencies and Contradictions in Financial Reports using Large Language Models
 
  • Details
  • Full
Options
December 2023
Conference Paper
Title

Uncovering Inconsistencies and Contradictions in Financial Reports using Large Language Models

Abstract
Correct identification and correction of contradictions and inconsistencies within financial reports constitute a fundamental component of the audit process. To streamline and automate this critical task, we introduce a novel approach leveraging large language models and an embedding-based paragraph clustering methodology. This paper assesses our approach across three distinct datasets, including two annotated datasets and one unannotated dataset, all within a zero-shot framework. Our findings reveal highly promising results that significantly enhance the effectiveness and efficiency of the auditing process, ultimately reducing the time required for a thorough and reliable financial report audit.
Author(s)
Deußer, Tobias  orcid-logo
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Leonhard, David
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Hillebrand, Lars Patrick  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Berger, Armin
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Khaled, Mohamed
PricewaterhouseCoopers GmbH
Heiden, Sarah
PricewaterhouseCoopers GmbH
Dilmaghani, Tim
PricewaterhouseCoopers GmbH
Kliem, Bernd
PricewaterhouseCoopers GmbH
Loitz, Rüdiger
PricewaterhouseCoopers GmbH
Bauckhage, Christian  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Sifa, Rafet  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Mainwork
IEEE International Conference on Big Data 2023. Proceedings  
Project(s)
The Lamarr Institute for Machine Learning and Artificial Intelligence  
Funder
Bundesministerium für Bildung und Forschung -BMBF-  
Conference
International Conference on Big Data 2023  
File(s)
Download (358.08 KB)
Rights
Use according to copyright law
DOI
10.1109/BigData59044.2023.10386673
10.24406/publica-2501
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Keyword(s)
  • contradiction detection

  • natural language processing

  • large language models

  • financial reports

  • machine learning

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024