• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Audio Transformer for Synthetic Speech Detection via Multi-Formant Analysis
 
  • Details
  • Full
Options
2024
Conference Paper
Title

Audio Transformer for Synthetic Speech Detection via Multi-Formant Analysis

Abstract
This paper introduces a novel multi-task transformer for detecting synthetic speech. The network encodes magnitude and phase of the input speech with a feature bottleneck used to autoencode the input magnitude to predict the trajectory of the first phonetic formants (F0 F1 F2) and to distinguish whether the input speech is synthetic or natural. The approach achieves state-of-the-art performance on the ASVspoof 2019 LA dataset with an AUC score of 0.932 while ensuring interpretability at the same time.
Author(s)
Cuccovillo, Luca  
Fraunhofer-Institut für Digitale Medientechnologie IDMT  
Gerhardt, Milica  
Fraunhofer-Institut für Digitale Medientechnologie IDMT  
Aichroth, Patrick  
Fraunhofer-Institut für Digitale Medientechnologie IDMT  
Mainwork
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024. Proceedings  
Conference
Conference on Computer Vision and Pattern Recognition Workshops 2024  
Workshop on Media Forensics 2024  
Open Access
Link
Link
DOI
10.1109/CVPRW63382.2024.00444
Additional link
Full text
Language
English
Fraunhofer-Institut für Digitale Medientechnologie IDMT  
Keyword(s)
  • Media Forensics

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024