• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. End-to-End Premature Ventricular Contraction Detection Using Deep Neural Networks
 
  • Details
  • Full
Options
2023
Journal Article
Title

End-to-End Premature Ventricular Contraction Detection Using Deep Neural Networks

Abstract
In Holter monitoring, the precise detection of standard heartbeats and ventricular premature contractions (PVCs) is paramount for accurate cardiac rhythm assessment. This study introduces a novel application of the 1D U-Net neural network architecture with the aim of enhancing PVC detection in Holter recordings. Training data comprised the Icentia 11k and INCART DB datasets, as well as our custom dataset. The model’s efficacy was subsequently validated against traditional Holter analysis methodologies across multiple databases, including AHA DB, MIT 11 DB, and NST, as well as another custom dataset that was specifically compiled by the authors encompassing challenging real-world examples. The results underscore the 1D U-Net model’s prowess in QRS complex detection, achieving near-perfect balanced accuracy scores across all databases. PVC detection exhibited variability, with balanced accuracy scores ranging from 0.909 to 0.986. Despite some databases, like the AHA DB, showcasing lower sensitivity metrics, their robust, balanced accuracy accentuates the model’s equitable performance in discerning both false positives and false negatives. In conclusion, while the 1D U-Net architecture is a formidable tool for QRS detection, there’s a clear avenue for further refinement in its PVC detection capability, given the inherent complexities and noise challenges in real-world PVC occurrences.
Author(s)
Kraft, Dimitri  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Bieber, Gerald  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Jokisch, Peter
custo med GmbH
Rumm, Peter
custo med GmbH
Journal
Sensors. Online journal  
Open Access
DOI
10.3390/s23208573
10.24406/publica-2539
File(s)
End-to-End Premature Ventricular_Senors-CC-BY.pdf (2.65 MB)
Rights
CC BY 4.0: Creative Commons Attribution
Language
English
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Keyword(s)
  • Branche: Healthcare

  • Research Line: Machine learning (ML)

  • LTA: Machine intelligence, algorithms, and data structures (incl. semantics)

  • Artificial intelligence

  • Electrocardiography

  • Mobile computing

  • Signal classification

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024