• English
  • Deutsch
  • Log In
    Password Login
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Informed machine learning through functional composition
 
  • Details
  • Full
Options
2018
Conference Paper
Titel

Informed machine learning through functional composition

Abstract
Addressing general problems with applied machine learning, we sketch an approach towards informed learning. The general idea is to treat data driven learning not as a parameter estimation problem but as a problem of sequencing predefined operations. We show by means of an example that this allows for incorporating expert knowledge and leads to traceable or explainable decision making systems.
Author(s)
Bauckhage, Christian
Ojeda, César
Schücker, Jannis
Sifa, Rafet
Wrobel, Stefan
Hauptwerk
Conference "Lernen, Wissen, Daten, Analysen", LWDA 2018. Proceedings. Online resource
Project(s)
ML2R
Funder
Bundesministerium für Bildung und Forschung BMBF (Deutschland)
Konferenz
Conference "Lernen, Wissen, Daten, Analysen" (LWDA) 2018
Thumbnail Image
Externer Link
Externer Link
Language
English
google-scholar
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022